본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
한국과 일본의 비금속광물자원에 대한 조사연구 / 과학기술부 인기도
발행사항
[과천] : 과학기술부, 2000
청구기호
333.85 ㄱ373ㅎ
자료실
[서울관] 서고(열람신청 후 1층 대출대)
형태사항
ⅹⅹⅵ, 158 p. : 삽도, 도표, 사진 ; 30 cm
제어번호
MONO1200017200
주기사항
주관연구기관명: 한국자원연구소
주관연구책임자: 고상모
원문
미리보기

목차보기더보기

목차

[표제지 등]=0,1,2

제출문=i,3,2

요약문=iii,5,14

목차=xvii,19,10

제1장 서론=1,29,1

제1절 연구개발의 필요성=1,29,2

제2절 연구개발 목표=2,30,2

제3절 연구범위=3,31,2

제2장 국내외 기술개발 현황=5,33,1

제1절 비금속광상 탐사분야=5,33,1

1. 국내 기술동향 및 기술수준=5,33,1

2. 국외 기술동향 및 기술수준=5,33,1

제2절 비금속광상성인 해석분야=5,33,1

1. 국내 기술동향 및 기술수준=5,33,1

2. 국외 기술동향 및 기술수준=6,34,1

제3절 비금속광물자원 정제-가공기술=6,34,1

제4절 일본의 세라믹스 원료현황=7,35,1

1. 개요=7,35,1

2. 원료현황=7,35,3

3. 수입원료=9,37,3

4. 원료정제=11,39,1

5. 금후의 전망=12,40,1

제3장 연구개발수행 내용 및 결과=13,41,1

제1절 서론=13,41,2

제2절 한국의 납석광상 조사결과=14,42,1

1. 밀양 납석광상=14,42,28

2. 노화도 납석광상=41,69,22

제3절 일본의 납석광상 조사결과=63,91,1

1. 平木(Hiraki) 납석광상=63,91,12

2. 三石(Mitsuishi) 납석광상지역=74,102,16

3. 勝光山(Shokozan) 납석광상=90,118,17

제4절 한국과 일본의 납석광상비교=107,135,1

1. 지질학적 및 지체구조적 비교=107,135,1

2. 광상성인적 비교=107,135,9

제5절 기타 일본의 비금속광물자원현황=116,144,1

1. San(サソ)벤토나이트광산=116,144,6

2. 石見(Iwami) 불석광산=121,149,5

3. 斐川(Nabeyama) 견운모광산=126,154,3

4. 豊順(Hojun) 벤토나이트광산 및 가공산업체=128,156,3

5. 水澤(Mizusawa) 산성백토광산=130,158,1

6. 金丸(Kanamaru) 장석광산=131,159,7

7. 月布(Kunimain) 벤토나이트 광산 및 クニミネ(Kunimine)공업주식회사=138,166,6

8. 일본의 벤토나이트자원 현황=143,171,2

제6절 결론=145,173,5

제4장 연구개발목표 달성도 및 대외기여도=150,178,2

제5장 연구개발결과의 활용계획=152,180,1

제6장 참고문헌=153,181,6

Table1 Ore reserves of ceramic raw minerals of Japan=9,37,1

Table2 Importing amounts and countries of ceramic raw minerals=10,38,1

Table3 Stratigraphy of Kyongsang Supergroup=15,43,1

Table4 Chemical compositions of hosted andesite lava and altered rocks of the Milyang pyrophyllite deposit=34,62,1

Table5 K-Ar age of sericite occurring in the Milyang pyrophyllite deposit=39,67,1

Table6 K-Ar age of amphibole in andesite and rhyolite lava whole rock near Nohwado deposit=44,72,1

Table7 Chemical compositions of altered rocks of the Nohwa mine=55,83,4

Table8 K-Ar age of sericite occurring in the Nohwa mine=61,89,1

Table9 K-Ar ages of rocks and minerals occurring in the Hiraki welded tuff formation and Kamogawa formation=67,95,1

Table10 Chemical compositions of the Hiraki ores=72,100,1

Table11 Oxygen and hydrogen isotopic compositions of the Hiraki Kaolin ores=72,100,1

Table12 Chemical compositions of the Hiraki ores with different utilization=73,101,1

Table13 Chemical composition of KPC=73,101,1

Table14 Quality conditions of KPC=73,101,1

Table15 General compositions of the compound materials of SiO₂-B₂O₃-Al₂O₃-CaO-(Na₂O+K₂O)series used for glass fiber=74,102,1

Table16 K-Ar ages of sericites occurring in the Ohira pyrophyllite deposit of the Mitsuishi mine area=87,115,1

Table17 Chemical compositions of the Ohira ores in the Mitsuishi mine area=89,117,1

Table18 Oxygen and hydrogen isotopic compositions of the Ohira sericite ores=89,117,1

Table19 Sulfur isotopic compositions of pyrites occurring in the pyrophyllite deposits of Korea and Japan=110,138,1

Table20 Oxygen and hydrogen isotopic compositions of pyrophyllites and sericites occurring in the pyrophyllite deposits of Korea and Japan=111,139,1

Table21 K-Ar ages of hydrothermally altered minerals in the study area=113,141,1

Table22 Recent bentonite production, utilization and demand amounts of each bentonite mine in Japan=143,171,1

Table23 Recent demand amounts of each utilization of bentonite in Japan=144,172,1

Fig.1 Distribution map of late Cretaceous volcanic belt and hydrothermal pyrophyllite deposits in East Asia=1,29,1

Fig.2 Locality of studied pyrophyllite deposits in South Korea and Japan=13,41,1

Fig.3 The map showing the distribution of the Kyongsang Supergroup after Geological Society of Korea(1987) and the location of hydrothermal clay deposit areas including the Milyang district in the southern Korean peninsula=16,44,1

Fig.4 Geological compile map of the Milyang district after Kim and Lee(1964), Kim and Park(1964), Kim and Hwang(1988), and Hong and Choi(1988)=18,46,1

Fig.5 The map showing a plan and a cross section of hydrothermally altered zones of the Milyang district. Abbreviations:Pyro=pyrophyllite, Kaol=kaolinite, Qz=quartz, Chl=chlorite, Mus=muscovite(illite), Pl=plagioclase, Hbl=hornblende, Aug=augite=19,47,1

Fig.6 The variation of mineral assemblage in each hydrothermal alteration zone=21,49,1

Fig.7 X-ray diffraction patterns of the rocks from the Milyang pyrophyllite deposit and its peripheral part. Abbreviations:P=pyrophyllite, K=kaolinite, Q=quartz, D=diaspore M=muscovite(illite), S=svanbergite, H=hematite, R=rutile, C=chlorite, T=tourmaline, A=andalusite, Py=pyrite, At=anatase=22,50,1

Fig.8 Photomicrographs of the rosks from the Milyang pyrophyllite deposit. Width of all photomicrographs is 2.5mm a:Host porphyritic andesite lava at MIL14(cross nicol);b:Occurrence of andalusite of the pyrophyllite zone 1 at MIL30(open nicol);c:Occurrence of diaspore and svanbergite of the pyrophyllite zone 1 at near MIL9(open nicol);d:Occurrence of the pyrophyllite zone 2 at MIL12(open nicol);e:Occurrence of dumortierite as a vein at near KIL3(open nicol);f:Occurrence of dumortierite as spherules as MIL6(open nicol)=23,51,1

Fig.9 Columnar sections of drilling cores in/around the Milyang pyrophyllite deposit. All of the drillings were performed by KORES(Korea Resources Corporation). Abbreviations of minerals are the same as Fig.5=24,52,1

Fig.10 a:An overall view of the north deposit of the Milyang pyrophyllite deposit;b:Occurrence of the pyrophyllite zone 1 on 255mL. The pyrophyllite zone 1 occurs as a mushroom-like shape. Abbreviations:PP1=Pyrophyllite zone 1, PP2=Pyrophyllite zone 2, SIL=Silicified zone=25,53,1

Fig.11 Plan figures of the Milyang pyrophyllite deposit showing the distribution of hydrothermal alteration zones, the variation of mineral assemblage of ores, and sample localities. a:the north deposit;b:the south depost. Abbreviations:Mont-Ch1=montmorillonite-chlorite mixed layer clay minerals. Other abbreviations of minerals are the same as Fig.5=27,55,2

Fig.12 The map showing the distributions of diaspore-, aluminosillcate-, and borosilicate-bearing ores and their boron contents in the Milyang pyrophyllite deposit=29,57,1

Fig.13 Occurrence of borosilicates and diaspore in the Milyang pyrophyllite deposit. All photographs were taken from the 235mL. a:Tourmaline and dumortierite occurring as crack-filling minerals. b:Dumortierite occurring as veins. c:Tourmaline occurring along bedding planes(originally flow structure of andesite lava). d:A diaspore-rich zone occurring as a bed several tens cm thick. Abbreviations:Tur=tourmaline, Dm=dumortierite, Dsp=diaspore. Other abbreviations of minerals are the same as Fig.5=30,58,1

Fig.14 A schematic cross section of the north deposit of the Milyang pyrophyllite deposit(NW-SE direction)=31,59,1

Fig.15 TG-DTA curves of ores from the pyrophyllite zone 1, the Milyang pyrophyllite deposit. a:MIL28;b:MIL5=32,60,1

Fig.16 Al₂O₃versus elements diagrams for the rocks from the Milyang pyrophyllite deposit and its peripheral parts, part1=35,63,1

Fig.17 Al₂O₃versus elements diagrams for the rocks from the Milyang pyrophyllite deposit and its peripheral parts, part2=36,64,1

Fig.18 REE patterns(normalized by an andesite lava) of the rocks from the Milyang pyrophyllite deposit and its peripheral parts. The composition of the andesite lava was taken from MIL38=38,66,1

Fig.19 Stability relationships in the system Al₂O₃-SiO₂-H₂O at 100MPa H₂O(Hemley et al., 1980), and inferred T-m SiO₂paths during the hydrothermal alteration of the Milyang, Nohwado, and Shokozan pyrophyllite deposits=40,68,1

Fig.20 Geologic map of the Nohwado island=43,71,1

Fig.21 Ore zones of the Nohwa pyrophyllite deposit=45,73,1

Fig.22 Cross sections of the No.1(a) and No.5(b) deposits in the Nohwa mine=46,74,1

Fig.23 Alteration mineral zoning and schematic cross section of the No.5 deposit in Nohwa mine=48,76,1

Fig.24 Alteration mineral zoning and sampling locations of underground -55m and -70m levels of the No.1 deposit in Nohwa mine=49,77,1

Fig.25 X-ray diffraction patterns of each alteration zone and mineral paragenetic sequence of the No.5 deposit in the Nohwa mine=50,78,1

Fig.26a Microscopic characteristics of altered rocks(ores) occurring in corundum and diadpore zones of the Nohwa mine=51,79,1

Fig.26b Microscopic characteristics of altered rocks occurring in pyrophyllite zone1, and 2, and unaltered hosted rhyolitic tuff=52,80,1

Fig.27 Al₂O₃versus elements diagrams for the altered rocks of the Nohwa mine=59,87,2

Fig.28 Stability diagram in the system Al₂O₃-SiO₂-H₂O of 1Kb H₂O of the Nohwa pyrophyllite deposit(Hemley et al., 1980)=62,90,1

Fig.29 Locality map of the Hiraki mine=64,92,1

Fig.30 Landscope of Hiraki open pit area(A), factory(B) and producing glass fiber(C)=65,93,1

Fig.31 Geologic map of the Hiraki mine area(Tananami, 1991)=66,94,1

Fig.32 Geological columnar section of volcanic formations in the Hiraki mine area=68,96,1

Fig.33 Schematic cross section map of the Hiraki mine area=68,96,1

Fig.34 Detailed geologic map of the Hiraki mine area=69,97,1

Fig.35 X-ray diffraction patterns of typical ores occurring in the Hiraki mine=71,99,1

Fig.36 Geologic map, location of pyrophyllite depoditd and cross section of the Mitsuishi area, 1:Alluvium, 2:Quartz-porphyry, 3~7:Cretaceous rhyolitic rocks(Upper formation), 3:Myojinsan welded tuff, 4:Yagitani welded tuff, 5:Hirayamatani welded tuff, 6:Notani welded tuff, 7:Tobashi shale formation, 8:Cretaceous rhyolitic rocks(Lower formation), 9:Paleozoic=75,103,1

Fig.37 Landscape of the Ohira pyrophyllite deposit in the Oaiyama mine area=76,104,1

Fig.38 Geological columnar section of rhyolitic rocks(Fujii et al.,1979)=77,105,1

Fig.39 Alteration mineral zoning and geology of the Mitsuishi area, 1:Alluvium, 2:Quartz-porphyry, 3:Cretaceous rhyolitic rocks(Upper formation), 4~6:Altered rock of Lower formation, 4:Silicified zone, 5:Pyrophyllite-sericite clay zone, 6:Weakly altered zone, 7:Lower formation, 8:Paleozoic=81,109,1

Fig.40 Geologic cross section of the Mitsuishi area(Symbols are same at Fig.39)=82,110,1

Fig.41 Mode of occurrences in the Yagi, Kato and Gobanta mines of the Mitsuishi area=82,110,1

Fig.42 X-ray diffraction patterns of the typical Ohira ores in the Mitsuishi area=84,112,1

Fig.43 Schematic diagrams showing the formation processes of pyrophyllite deposits and alteration processes=86,114,1

Fig.44 Locality map of the Shokozan pyrophyllite deposit=91,119,1

Fig.45 Landscape of Nishiyama-higashi ore body of in the shokozan pyrophyllite deposit=92,120,1

Fig.46 Landscape of Nishiyama-minami(A), and Takinotani(B) ore bodies in the Shokozan pyrophyllite deposit=93,121,1

Fig.47 Geologic map and cross section of the Shokozan mine area=95,123,1

Fig.48 Relationships between stratigraphic column and pyrophyllite ore horizon in the Shokozan deposit=96,124,1

Fig.49 Idealized columnar sections in the Naka-muraguchi, Nishiyama-higashi and Takinotani ore bodies=96,124,1

Fig.50 Geologic cross sections in the Nishiyama-higashi ore body of the Shokozan deposit=101,129,1

Fig.51 Diagram showing the mineral assemblage of the alteration zones in the Shokozan deposit=102,130,1

Fig.52 Cross sections showing the distribution of alteration zones in the Nishiyama-higashi ore body of the Shokozan depiosit=103,131,1

Fig.53 Cross sections showing the relationship between geology and alteration zones in the Nishiyama-higashi ore body of the Shokozan deposit=103,131,1

Fig.54 Schematic diagram of relationships between stratigraphy and hydrothermal alteration of the Shokozan deposit=106,134,1

Fig.55 Hypothetical paleo-geographic positions and igneous belt in the late Cretaceous to early Tertiary(modified from Terakado and Nohda, 1993)=108,136,1

Fig.56 Sulfur isotopic compositions of pyrites occurring in some pyrophyllite deposits of Korea and Japan=109,137,1

Fig.57 δD versus δO diagram of pyrophyllites and sericites occurring in some pyrophyllite deposits of Korea and Japan. Meteoric water line is from Craig(1961) and magmatic water box is from Taylor(1976)=112,140,1

Fig.58 Stability diagrams in the system Al₂O₃-SiO₂-H₂O at 100Mpa H₂O(Hemley et al.1980) and inferred T-m SiO₂path during the hydrothermal alteration of the Milyang, Nohwa and Shokosan pyrophyllite deposits=115,143,1

Fig.59 Locality map of studied non-metallic mineral deposits in Japan=117,145,1

Fig.60 Landscape of open pit area(A) in San bentonite deposit and factory(B&C)=118,146,1

Fig.61 Procedures of ore transportation(A), drying(B), milling(C) and separation(D) processing of San-bentonite factory=119,147,1

Fig.62 Landsacpe of Iwami zeolite zeolite mine(A) and underground(B) and zeolite outcrops(C)=122,150,1

Fig.63 Procedures of ore milling in rollar mill(A), packing(B) and produced zeolite packs(C)=123,151,1

Fig.64 Landscape of Nabeyama sericite mine(A), the fault contact between non-altered hosted granite and sericite ore in underground(B), and purified sericite cakes(C)=127,155,1

Fig.65 Landscape of Hojun bentonite mine office(A), factory(B), and C-40 deposit(C and D)=129,157,1

Fig.66 Geologic map of the Kanamaru feldspar mine area=132,160,1

Fig.67 Cross section of Kanamaru feldspar deposit=133,161,1

Fig.68 Landscape of Kanamaru mine office(A), mined area(B) and ore zone(C)=134,162,1

Fig.69 Outcrops of ore zone area(A), ore pile(B) and crushed feldsapr ore piles(C and D)=135,163,1

Fig.70 Flow sheet of purification of feldspar ores=136,164,1

Fig.71 Flow sheet of pulverization and Fe removal of feldspar=137,165,1

Fig.72 Landscape of Kunimine bentonite deposit(A) and underground ore zone(B, C and D)=139,167,1

Fig.73 Landscape of Kunimine factory office(A), factory(B) and procedures of bentonite ore stock(C) and transportation(D)=140,168,1

Fig.74 Procedures of bentonite ore crushing in roll crusher(A), drying in rotary dryer(B), milling in rollar mill(C) and packing(D) processes=141,169,1

Fig.75 Flow sheet of bentonite production=142,170,1

영문목차

[title page etc.]=0,1,10

SUMMARY=ix,11,6

CONTENTS=xv,17,4

Figure captions=xix,21,6

Table captions=xxv,27,2

I. Introduction=1,29,1

1. Necessities=1,29,2

2. Goals=2,30,2

3. Scopes=3,31,2

II. Present conditions of domestic and foreign techniques=5,33,1

1. Non-metallic mineral resources exploration=5,33,1

1-1. Present conditions and level of domestic exploration technique=5,33,1

1-2. Present conditions and level of foreign exploration technique=5,33,1

2. Genesis of non-metallic mineral deposits=5,33,1

2-1. Present conditions and level of domestic exploration technique=5,33,1

2-2. Present conditions and level of foreign exploration technique=6,34,1

3. Purification of non-metallic mineral resources=6,34,1

4. Present conditions of ceramic raw minerals in Japan=7,35,1

1. Prefeace=7,35,1

2. Domestic raw minerals=7,35,3

3. Importing raw minerals=9,37,3

4. Purification of raw minerals=11,39,1

5. Future's view=12,40,1

III. Contents and results=13,41,1

1. Introduction=13,41,2

2. Result of the survey of prophyllite deposits in Korea=14,42,1

2-1. Milyang pyrophyllite deposit=14,42,28

2-2. Nohwa pyrophyllite deposit=41,69,22

3. Result of the survey of pyrophyllite deposits in Japan=63,91,1

3-1. Hiraki pyrophyllite deposit=63,91,12

3-2. Area of Mituishi pyrophyllite deposit=74,102,16

3-3. Shokozan pyrophyllite deposit=90,118,17

4. Comparison between Korean and Japanese pyrophyllite deposits=107,135,1

4-1. Comparison of geology and geo-tectonics=107,135,1

4-2. Comparison of genesis of ore deposits=107,135,9

5. Present situations of non-metallic mineral deposits of Japan=116,144,1

5-1. San-bentonite mine=116,144,6

5-2. Iwami zeolite mine=121,149,5

5-3. Nabeyama sericite mine=126,154,3

5-4. Hojun bentonite mine and factroy=128,156,3

5-5. Mizusawa fuller's earth mine=130,158,1

5-6. Kanamaru feldspar mine=131,159,7

5-7. Kunimain bentonite mine and Kunimine factory=138,166,6

5-8. Present situations of bentonite in Japan=143,171,2

6. Conclusions=145,173,5

IV. Accomplishment and contribution of result=150,178,2

V. Utilization plan of result=152,180,1

VI. References=153,181,6

Fig.30 Landscope of Hiraki open pit area(A), factory(B) and producing glass fiber(C)=65,93,1

Fig.37 Landscape of the Ohira pyrophyllite deposit in the Mitsuishi mine area=76,104,1

Fig.45 Landscape of Nishiyama-higashi ore body of in the shokozan pyrophyllite deposit=92,120,1

Fig.46 Landscape of Nishiyama-minami(A), and Takinotani(B) ore bodies in the Shokozan pyrophyllite deposit=93,121,1

Fig.60 Landscape of open pit area(A) in San bentonite deposit and factory(B&C)=118,146,1

Fig.62 Landsacpe of Iwami zeolite zeolite mine(A) and underground(B) and zeolite outcrops(C)=122,150,1

Fig.64 Landscape of Nabeyama sericite mine(A), the fault contact between non-altered hosted granite and sericite ore in underground(B), and purified sericite cakes(C)=127,155,1

Fig.65 Landscape of Hojun bentonite mine office(A), factory(B), and C-40 deposit(C and D)=129,157,1

Fig.68 Landscape of Kanamaru mine office(A), mined area(B) and ore zone(C)=134,162,1

Fig.69 Outcrops of ore zone area(A), ore pile(B) and crushed feldsapr ore piles(C and D)=135,163,1

Fig.72 Landscape of Kunimine bentonite deposit(A) and underground ore zone(B, C and D)=139,167,1

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0000846271 333.85 ㄱ373ㅎ [서울관] 서고(열람신청 후 1층 대출대) 이용불가
0000846272 333.85 ㄱ373ㅎ [서울관] 서고(열람신청 후 1층 대출대) 이용불가

가상서가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기