본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
고기능 나노구조 스프레이코팅 기술개발 / 교육과학기술부 인기도
발행사항
[서울] : 교육과학기술부, 2008
청구기호
전자형태로만 열람가능함
형태사항
222 p. : 삽화, 도표, 사진 ; 30 cm
제어번호
MONO1200818303
주기사항
주관연구기관: 포항산업과학연구원
주관연구책임자: 황순영
"나노소재기술개발사업"의 연구과제임
중사업명: 21C 프론티어 연구개발사업
원문
미리보기

목차보기더보기

표제지

목차

제출문 2

보고서 초록 3

요약문 4

SUMMARY 11

CONTENTS 13

I. 나노구조 내식코팅 기술 개발 14

제1장 연구개발과제의 개요 14

제1절 나노구조 초경코팅 기술 14

제2절 나노구조 고상윤활코팅 기술 14

제2장 국내외 기술개발 현황 16

제1절 국외의 기술개발 현황 16

제2절 국내의 기술개발 현황 17

제3장 연구개발수행 내용 및 결과 19

제1절 연구개발 수행방법 19

제2절 연구개발 수행 내용 및 결과 29

1. 나노구조 초경 용사코팅 기술 29

2. 나노구조 고상윤활 용사코팅 기술 63

제4장 목표달성도 및 관련분야에의 기여도 96

1. 차년도별 연구개발 목표 및 내용 97

2. 세부연구목표 및 평가의 착안점 98

3. 연구범위 및 연구수행 방법 99

4. 연구목표의 달성도 102

제5장 연구개발결과의 활용계획 104

1. 연구개발결과의 활용 계획 105

2. 사업화 계획의 적절성 105

제6장 연구개발과정에서 수집한 해외과학기술정보 105

제7장 참고문헌 106

II. 나노구조 내식코팅 기술 개발 109

목차 109

제1장 연구개발과제의 개요 112

제1-1절 연구개발 목적 112

제1-2절 연구개발 필요성 112

1-2-1. 기술적 측면 112

1-2-2. 사회 경제적 측면 115

제3절 연구개발 목표 및 범위 116

1-3-1. 연구 목표 116

1-3-2. 연구 범위 118

제2장 국내외 기술개발 현황 119

제2-1절 국내외 연구개발 현황 및 실적 119

제2-2절 국내·외 기술개발현황에서 차지하는 위치/기여도 120

제3장 연구개발수행 내용 및 결과 122

제3-1절 나노구조 용사 코팅용 소재 제조 및 특성 평가 122

3-1-1. 분무 건조 제조공정에 의한 분말 제조 122

가. Spray Drying 공정상 변수에 따른 실험방법의 변화 123

나. Slurry 제조상 변수에 따른 실험방법의 변화 123

3-1-2. 분무건조 과립분말의 특성 124

3-1-3. Spray Dryer 공정 변수에 따른 분말 Granule의 특성 125

가. Atomizer Disk 회전속도의 영향 125

나. Slurry Feeding Rate의 영향 129

다. Atomizer Disk 크기의 영향 129

라. Chamber Pressure의 영향 131

3-1-4. Slurry 제조 변수에 의한 과립분말의 특성 133

가. Slurry의 결합제의 영향 133

나. Slurry 고상율의 영향 135

제3-2절 나노구조 용사 코팅 공정 최적화 138

3-2-1. 플라즈마 용사 코팅의 비행 액적 열적 거동 해석 139

가. 세라믹 용사 분말의 열적 거동 해석 141

나. 액적의 적층 단계 수치 해석 144

3-2-2. Y₂O₃의 용사 코팅 시 조업인자의 영향에 대한 고찰 146

가. 서론 146

나. 실험 방법 147

다. Formulations 148

라. 실험결과 149

마. Discussion 155

바. Summary 163

제3-3절 나노코팅재의 최적 코팅 조건 163

3-3-1 나노구조 코팅 구현 원리 163

3-3-2 나노구조 코팅을 위한 장비 개조 및 조업 조건 설정 169

제3-4절 나노구조 코팅층의 미세조직 및 특성 평가 172

3-4-1. 서론 172

3-4-2. 실험방법 173

가. 과립분말 173

나. 플라즈마 스프레이에 의한 코팅층 제조 175

다. 미세조직 관찰 및 특성평가 176

라. ICP 플라즈마 식각 저항성 평가 176

3-4-3. Y₂O₃ 코팅층의 미세조직 및 특성 평가 177

가. 원료분말공급시스템에 따른 코팅층의 미세조직 및 특성 177

나. 플라즈마 스프레이 출력에 따른 코팅의 미세조직 및 특성 181

다. 플라즈마 식각 거동 185

3-4-4. Al₂O₃-Y₂O₃(이미지참조)계 나노복합재료 코팅층의 특성 189

가. Al₂O₃-Y₂O₃(이미지참조)계 복합재료 코팅의 미세조직 및 특성 189

나. Al₂O₃-Y₂O₃(이미지참조)계 복합재료 코팅의 열처리 영향 194

다. 플라즈마 식각 거동 199

3-4-5. 결론 204

제3-5절 나노구조 코팅재의 현장 기술 개발 및 실용화 연구 205

3-5-1. 반도체/LCD 장비용 나노구조 내식 코팅 시제품 제조 205

가. 반도체/LCD 제조 공정 및 코팅 소재 205

나. 나노/비정질 내식 코팅 현장 적용 기술 및 부품 개발 212

제4장 목표달성도 및 관련분야에의 기여도 215

제4-1절 연구목표의 달성도 215

제4-2절 국제 기술수준과 나노사업단 연구에 의한 기술발전에의 기여도 218

제4-3절 정량적 연구 성과 222

제4-4절 연구개발 인프라구축 성과 222

4-4-1. 참여연구원(인원수) 222

4-4-2. 인력양성 성과 223

제5장 연구개발결과의 활용계획 223

제5-1절 연구개발결과의 활용 및 향후 계획 223

제6장 연구개발과정에서 수집한 해외과학기술정보 224

제7장 참고문헌 224

Table. 3-2-1-2-1. WC-Co powder types and coating microstructures in various studies 47

Table. 3-2-1-2-2/3-2-1-2-16. Comparison of wear results by sand wear test 50

Table. 3-2-1-5-1. Comparison of wear results by sand wear test 59

Table. 3-2-2-1-1-1. Spray frying parameter. 64

Table. 3-2-2-1-2-1. 분말제조에 사용된 gas atomizer 공정조건 67

Table. 3-2-2-2-2-1. Coating parameter. 69

Table. 3-2-2-3-1. Pin-on-disc wear test condition. 80

Table. 3-2-2-4-1-1. 각 기동 횟수마다 걸리는 전류값 84

Table. 3-2-2-4-1-2. Results of rig tests of PS304 and composite coatings. 87

Table. 3-2-2-4-3-1. Thermal properties of as-sprayed coatings. 91

Table 1. spray coating conditions adapted in order to Investigate the spray parameter effects on mechanical properties and visual aspect of coating 147

Table 2. Description of the input data for the calculations of Fig. 42. 156

table 3. Description of coating characteristics formed under difference coating conditions. 172

Table 4. Research trends for oxide etching equipment 206

Table 5. Research trends for Poly Si etching equipment 207

Table 6. Research trends for Metal etching equipment 207

Table 7. Species of etchant and reaction products for different etching materials. 208

Fig. 3-1-1-1. Schematic diagram of spray dryer system 20

Fig. 3-1-1-2. Schematic diagram of various disk types 21

Fig. 3-1-1-3. Atomization theory and schematic diagram of pressure nozzle 22

Fig. 3-1-1-4. Schematic diagram of two Fluid nozzle 22

Fig. 3-1-2-1. Experimental schematic of the in-flight particle diagnostics 23

Fig. 3-1-2-2. Schematic diagram of various nozzle types 24

Fig. 3-1-2-3. Relationship between flame velocity and combustion chamber pressure 24

Fig. 3-1-2-4. Flame temperature changes according to fuel flow rate and oxygen flow rate 25

Fig. 3-1-2-5. Optimization of spray condition ;... 26

Fig. 3-1-3-1. Characteristics of θ-gun 27

Fig. 3-1-3-2. Slurry Feeding Unit System 28

Fig. 3-2-1-1-1. Preparation of first nanostructured WC-Co powder by spray dryer 30

Fig. 3-2-1-1-2. SEM images of nanostructured WC-Co powder 30

Fig. 3-2-1-2-1. Preparation of second nanostructured WC-Co powder by spray dryer 32

Fig. 3-2-1-2-2. SEM images of second nanostructured WC-Co powder 32

Fig. 3-2-1-2-3. Particle distribution and XRD pattern of second nanostructured WC-Co powder 33

Fig. 3-2-1-2-4. Schematic diagram of HVOF JP-5000 33

Fig. 3-2-1-2-5. Pressure changes in a combustion chamber according to the changes of fuel and oxygen rate 34

Fig. 3-2-1-2-6. Cross-sectional distributions of the particle temperatures at a distance of 380 mm and fuel rate of 5.1 gph according to the changes of oxygen rates(scfh) 37

Fig. 3-2-1-2-7. Cross-sectional distributions of tile particle temperatures at a distance of 380 mm and fuel rate of 6.0 gph according to the changes of oxygen rates(scfh) 39

Fig. 3-2-1-2-8. Cross-sectional distributions of the particle velocities(m/sec.) at a distance of 380 mm and fuel rate of 5.1 gph according to the changes of oxygen rates(scfh) 41

Fig. 3-2-1-2-9. Cross-sectional distributions of the particle velocities(m/sec.) at a distance of 380 mm and fuel rate of 6.0 gph according to the changes of oxygen rates(scfh) 43

Fig. 3-2-1-2-10. Changes of particles' velocities and temperatures at a stand-off distance 380 mm. They were measured at the center of the flames with variation of oxygen rates and fixed fuel rate 5.1 gph 44

Fig. 3-2-1-2-11. Changes of particles' velocities and temperatures at a stand-off distance 380 mm. They were measured at the center of the flames with variation of oxygen rates and fixed fuel rate 6.0 gph 44

Fig. 3-2-1-2-12. Relationship between the particle velocity and combustion pressure at a stand-off distance 380 mm. They were measured at the center of the flames with variation of oxygen rates and fifed fuel rate 5.1 and 6.0 gph 45

Fig. 3-2-1-2-13. SEM images of second nanostructured WC-Co coating 46

Fig. 3-2-1-2-14. XRD patterns of second nanostructured WC-Co powder and coating 46

Fig. 3-2-1-2-15. Comparison of wear results by scratch wear test 50

Fig. 3-2-1-3-1. Preparation of third nanostructured WC-Co powder by spray dryer 51

Fig. 3-2-1-3-2. Particle distribution and SEM Images of third nanostructured WC-Co powder 52

Fig. 3-2-1-3-3. SEM images of prepared WC-Co powder in inframat corporation 52

Fig. 3-2-1-3-4. Comparison of flow ability as a various WC-Co powders 53

Fig. 3-2-1-3-5. SEM images of third nanostructured WC-Co coating 54

Fig. 3-2-1-3-6. SEM images of commercialized WC-Co coating 54

Fig. 3-2-1-3-7. Comparison of wear results by scratch wear test 55

Fig. 3-2-1-4-1. Particle distribution and SEM images of fourth nanostructured WC-Co powder 56

Fig. 3-2-1-4-2. Comparison of flow ability as a various WC-Co powders 56

Fig. 3-2-1-4-3. Comparison of wear results by scratch wear test 57

Fig. 3-2-1-5-1. Preparation of fifth nanostructured WC-Co powder by spray dryer 58

Fig. 3-2-1-6-1. Application of mechanical seal 59

Fig. 3-2-1-6-2. Application result of mechanical seal 60

Fig. 3-2-1-6-3. Application of cylinder rod 60

Fig. 3-2-1-7-1. Schematic diagram of nanostructured slurry coating system 61

Fig. 3-2-1-7-2. SEM images of nanostructured WC-Co slurry feeder coatings 61

Fig. 3-2-1-7-3. SEM images and EDS analysis of nanostructured solid lubricant slurry feeder coatings 62

Fig. 3-2-2-1-1-1. SEM Surface Morphology of initial feedstock for spray drying. 64

Fig. 3-2-2-1-1-2. Spray dried feedstock with added nano-sized Cr₂O₃ 65

Fig. 3-2-2-1-1-3. Element distribution and phase fraction after spray dried powder feedstock. 66

Fig. 3-2-2-1-2-1. Characteristics of a bulk amorphous feedstock. 67

Fig. 3-2-2-1-2-2. Constituent particle morphology. 69

Fig. 3-2-2-2-2-1. SEM micrograph (BSE) of PS304 and spray dried coating;... 71

Fig. 3-2-2-2-2-2. SEM micrograph (BSE) of BMG and BMG-Cr₂O₃ and BMG-Cr₂O₃-Ag-BaF₂/ CaF₂ coating.(이미지참조) 72

Fig. 3-2-2-2-2-3. XRD results of the powedr feedstock and coatings. 73

Fig. 3-2-2-2-3-1. Variation of chemical composition with the increase of H₂ flow rate (NiCr-Cr₂O₃-Ag-BaF₂/CaF₂).(이미지참조) 75

Fig. 3-2-2-2-4-1. Comparison of the coating thickness and porosity of (A) PS304 and (B) spray dried and (C) BMG-Cr₂O₃-Ag-BaF₂/CaF₂. 76

Fig. 3-2-2-2-5-1. Comparison of microhardness of coatings with the increase of H₂flow rate. 77

Fig. 3-2-2-2-6-1. Bond strength test. 79

Fig. 3-2-2-2-6-2. Comparison of bond strength of coatings with the increase of H₂ flow rate. 79

Fig. 3-2-2-3-1. Friction coefficient and weight loss according to service temperature. 81

Fig. 3-2-2-3-2. Comparison of wear surface and wear cross-section at room temperature. 82

Fig. 3-2-2-4-1-1. (a) Rig test tribotester and (b) friction current at start-up, lift, shut-down, and stationary state during one cycle at RT and 350℃ (c) schematic drawing of Foil bearing. 83

Fig. 3-2-2-4-1-2. Journal and air foil bearing before rig rest 84

Fig. 3-2-2-4-1-3. Journal after rig rest 85

Fig. 3-2-2-4-1-4. Friction current of the NiCr base PS304 and spray dried coatings during rig test cycling at RT and 350℃. 86

Fig. 3-2-2-4-1-5. Friction current of the BMG-Cr₂O₃ and BMG-Cr₂O₃-Ag-BaF₂/CaF₂ coatings during rig test cycling at RT and 350℃.(이미지참조) 86

Fig. 3-2-2-4-1-6. Journals an foils after rig test at RT and 350℃ 87

Fig. 3-2-2-4-2-1. (a) Worn surface and mapping of Ag and (b) phase fraction [wt%] on Ni base PS304 coating; (c) worn surface and mapping of Ag and (d) phase fraction [wt%] on spray dried coating. 89

Fig. 3-2-2-4-2-2. SEM morphologies of transferred tribofilm and mapping of Ag on the counterpart surface from tile (a) blended coating and (b) nanostructured composite coating along with the (c) transferred Ag tribofilm content. 89

Fig. 3-2-2-4-2-3. EPMA mapping for worn surface of the journal at RT and 350 ℃ 90

Fig. 3-2-2-4-3-1. SEM micrograph (BSE) and XRD peaks of the BMG-Cr₂O₃ coating(이미지참조) 92

Fig. 3-2-2-4-3-2. DSC curves and amorphous phase fraction of BMG-Cr₂O₃ coating.(이미지참조) 92

Fig. 3-2-2-4-3-3. SEM micrograph (BSE) and XRD peaks of theBMG-Cr₂O₃-Ag-BaF₂/CaF₂ coating.(이미지참조) 93

Fig. 3-2-2-4-3-3. SEM morphologies of the BMC-Cr₂O₃ coating(이미지참조). 95

Fig. 3-2-2-4-3-4. SEM morphologies of the BMG-Cr₂O₃-Ag-BaF₂/CaF₂ coating.(이미지참조) 96

Fig. 3-2-2-4-3-5. Variation of Victors microhardness and porosity of the surface after as coating and the wear test according temperature. 96

Fig. 1. Brief description on materials spray processing and their characteristics 112

Fig. 2. Various nanostructured materials prepared by material spray processing. 113

Fig. 3. World wide industry structure (year 2003) 116

Fig. 4. Estimated world wide materials market 116

Fig. 5. Schematic diagram of spray dryer :... 122

Fig. 6. SEM image and XRD pattern of Al₂O₃-YAG(Al2O3-YAG) granule powder. 124

Fig. 7. SEM image of spray dried powders :... 125

Fig. 8. Effort of spray rotation speed and slurry feed rate on powder size. 126

Fig. 9. Effect of spray rotation speed on powder size. 127

Fig. 10. Effect of spray rotation speed on powder surface morphology. 128

Fig. 11. Effect of slurry feeding rate on powder size. 129

Fig. 12. Effect of atomizer disk size on powder size. 130

Fig. 13. Effect of chamber pressure on powder size distribution. 131

Fig. 14. Effect of chamber pressure on powder morphology. 132

Fig. 15. Effect of binder fraction in slurry on powder size. 133

Fig. 16. Effect of binder fraction in slurry on the fraction of defected powder. 134

Fig. 17. Effect of binder fraction in slurry on powder morphology. 134

Fig. 18. Effect of solid fraction in slurry on powder size. 136

Fig. 19. Effect of binder fraction in slurry on the fraction of defected powder. 137

Fig. 20. Effect of solid fraction in slurry on powder morphology and size distribution. 138

Fig. 21. Schematic describing plasma spraying 139

Fig. 22. Characteristics of gases used for plasma spraying 139

Fig. 23. Thermal profile of Plasma flame measured[38].(그림없음) 140

Fig. 24. Measured flame velocity[38].(그림없음) 140

Fig. 25. Experimentally measured flame temperature(a) and velocity(b) along the center line of flame. 141

Fig. 26. Calculated thermal history of Fe-Si amorphous powder in plasma thermal splaying. 141

Fig. 27. Calculated internal temperature of metallic powder with high thermal conductivity. 142

Fig. 28. Calculated relationship between (a) flight distance and flight velocity, (b) flight distance and flight time, (c) flight distance and heat transfer coefficient on powder surface.(그림없음) 143

Fig. 29. Grid generation in order to calculated internal temperature of powders which are assumed to be fixed in gas fluid. 144

Fig. 30. Calculated internal temperature of ceramic powders such as Y₂O₃(Y203) with low thermal conductivity. 144

Fig. 31. Schematics describing grid systems in order to calculate internal thermal history of powders which files through gas fluid. 145

Fig. 32. Reduced grid system in order to calculate heat transfer between powders and substrate, fluid flow of in-flight droplet after impingement on surface by assignment initial thermal and kinetical data as I.C. from simplified calculations. 145

Fig. 33. Fluid flow calculation of impinged droplets against surface. 146

Fig. 34. Calculation results of partially molten droplets which transform its shape to make newly developed coating surface. 146

Fig. 35. Visual aspect of Y₂O₃ coatings a)observed from the samples deposited on different spray distance and different deposition positions. and b) observed from the samples deposited under different coating conditions. 149

Fig. 36. (a) Temperature, and (b) fluid flow contour of plasma flame calculated for with tile plasma spraying conditions with Ar flow rate 36 l/min,H₂flowrate4l/min, current 750A, and voltage 50V. 150

Fig. 37. (a) The velocity of gas flame and in-flight droplet, (b) heat transfer coefficient of in-flight droplet, (c) flame temperature, and (d) temperature of in-flight droplet with 30mm diameter. 151

Fig. 38. Three different trajectories path A, B, and C considered in calculations(a).... 152

Fig. 39. The velocity of flame gas and in-flight droplet(a), the variation of H.T.C with distance(b), relationship between flight distance and flight time(c), the variation of H.T.C with time(d), plasma gas temperature with Bight distance(e), and plasma gas temperature with flight time(f). 154

Fig. 40. Calculated temperature profile inside of powders at flight time 0s(a), 0.00168s(b), and 0.00172s(c), where the thermal conductivity of solid was assumed as 0.5Wm-1K-1 for solid region and 5Wm-1K-1 for liquidus Y₂O₃.(이미지참조) 155

Fig. 41. The surface and center temperature variation of in-flight droplet calculated by considering thermal conduction inside of droplet, where the thermal conductivity of solid was assumed as 0.5 Wm-1K-1 and 5 Wm-1K-1 for liquidus Y₂O₃.(이미지참조) 155

Fig. 42. The calculated mean temperature at spray distance 120mm with variation of powder size, powder feeding position, initial gas velocity. gas conductivity, and plasma flame temperature at torch tip point. 156

Fig. 43. Experimentally measured results of flux, temperature, and velocity of in-flight droplets at spraying distance 120mm using Spray Watch™. 157

Fig. 44. Calculated droplet velocity(a) and droplet temperature with different drople4 diameter(b). 157

Fig. 45. Mean temperature of in-flight droplets passing along path A - Ccalculated at spray distance 120mm (a), and those calculated at different spray distance 100, 120, 150mm(b) along path C. 158

Fig. 46. (a) Outward appearance of granular Y₂O₃ powder composed of primary powders having diameter 1-3㎛, and (b) its magnified view. 158

Fig. 47. Surface and center temperature calculated with thermal conductivity of 1(a), 0.1(b), and 0.05 Wm -IK-1(c) for solid Y₂O₃, and 10 Wm -1K -1for liquid Y₂O₃.(이미지참조) 159

Fig. 48. Calculated temperature of primary particle attached on granule surface, which is compared to mean temperature of granule and plasma flame temperature. 160

Fig. 48. (a) Granular Y₂O₃ powders composed with 1-2㎛ primary powder and (b) over sprayed dense powder. 161

Fig. 49. (a) Naked eye view of Y₂O₃ coatings formed using over sprayed dense powder and its sectional view, (b) Naked eye view of Y₂O₃ coatings formed using granular porous powder and its sectional view. 161

Fig. 50. (a) Naked eye view of Y₂O₃ coatings formed using relatively fine power smaller than 38㎛ diameter and its sectional view, (b) Naked eye view of Y₂O₃ coatings formed using relatively fine powder lager than 38㎛ diameter and its sectional view. 162

Fig. 51. Schematics showing volume change and crystallization during solidification at melting temperature. 164

Fig. 52. Schematics showing vertical crack and splat boundary gap formation mechanism during spray deposition. 164

Fig. 53. (a) XRD analysis of Y₂O₃ coatings after plasma spray coating. and (b) sectional view of plasma spray coated Y₂O₃. 165

Fig. 54. Schematics showing volume change of materials which sustains random distribution of atoms even after solidification, where no urgent volume contraction is observed. 165

Fig. 55. Schematics showing no vertical crack and splat boundary gap formation in nano/amorphous structured coatings. 166

Fig. 56. (a) XRD analysis of newly developed NanoWin amorphous/nano structured coatings after plasma spray coating, and (b) sectional view of plasma spray amorphous/nano structured coatings. 166

Fig. 57. Numerical calculation results during left) gas atomization, middle) heating stage of plasma thermal spray, and c) cooling stage after deposition in plasma thermal spray. 167

Fig. 58. Schematic showing time-temperature-transformation curve. 168

Fig. 59. (a) XPS analysis resu14s of reaction products formed on Al₂O₃ coating exposed to low temperature plasma and corrosive CF₄+O₂+Ar(이미지참조) mixture gas and (b) its surface morphology. 168

Fig. 60. Modified cooling systems for internal type spray gun. 169

Fig. 61. Environmental controllable chamber for plasma splaying of metal or non-oxide ceramic materials prepared for 4he development of new corrosion resistant coating. 170

Fig. 62. The effects of plasma coating parameters on the hardness of newly developed nano/amorphous coating. 171

Fig. 63. The effect of powder feeding manner on the microstructure of conventional Y₂O₃ coating(upper) and newly developed nano/amorphous coating(lower). 171

Fig. 64. Phase diagram of Al₂O₃-Y₂O₃, and various selected compositions for nanocomposite coatings in this study. 173

Fig. 65. XRD patterns of Al₂O₃-Y₂O₃ nanocomposite powders manufactured by spray drying. 175

Fig. 66. SEM cross-sections and fractured surfaces of Y₂O₃ coatings from different powder feeding systems. 179

Fig. 67. Microhardness of Y₂O₃ coatings from different powder feeding systems. 180

Fig. 68. Scratch resistance of Y₂O₃ coatings from different powder feeding systems. 180

Fig. 69. Scratch resistance of Y₂O₃ coatings from different powder feeding systems. 181

Fig. 70. SEM micrographs of cross-section of Y₂O₃ coatings from different plasma jet power (a)32kW, (b)40kW, (c)45kW, and (d)50kw in external feeding system. 182

Fig. 71. Apparent porosity of Y₂O₃ coatings for plasma jet power. 182

Fig. 72. SEM micrographs of fractured surface of Y₂O₃ coatings from different plasma jet power (a)32kW, (b)40kW, (c)45kW, and (d)50kW. 183

Fig. 73. SEM micrographs of surface morphology of Y₂O₃ coatings from different plasma jet power (a)32kW, (b)40kW, (c)45kW, and (d)50kW. 183

Fig. 74. Apparent density of Y₂O₃ coatings for plasma jet power. 184

Fig. 75. Microhardness and corresponding Weibull plots of Y₂O₃ coatings from different plasma jet power. 185

Fig. 76. SEM micrographs of surface of (a)Al₂O₃, (b)Y₂O₃ coatings before and after ICP-RIE 186

Fig. 77. SEM micrographs of reaction products on (a)Al₂O₃, (b)Y₂O₃ coatings after ICP-RIE exposure for 10min. 186

Fig. 78. XRD patterns of (a)Al₂O₃, (b) Y₂O₃ coatings before and after ICP-RIE exposure. 187

Fig. 79. XPS analysis of reaction products on (a)Al₂O₃, (b)Y₂O₃ coatings before(thin line)/after(thick line) ICP-RIE exposure. 188

Fig. 80. XRD pattern of Al₂O₃-Y₂O₃ eutectic composition composite coating. 190

Fig. 81. SEM micrographs of Al₂O₃, Y₂O₃ eutectic composition composite coatings (a) 79%Al₂O₃-21%Y₂O₃, (b) 52.5%Al₂O₃-47.5%Y₂O₃, (c) 43%Al₂O₃-57%Y₂O₃ and (d) 29%Al₂O₃-71%Y₂O₃ 191

Fig. 82. Apparent density of Al₂O₃ -Y₂O₃ composite coatings 191

Fig. 83. Microhardness of Al₂O₃-Y₂O₃ composite coatings. 192

Fig. 84. Scratch resistance of Al₂O₃-Y₂O₃ composite coatings. 193

Fig. 85. Corrosion resistance of Al₂O₃-Y₂O₃ composite coatings against 2N HCl. 193

Fig. 86. DTA result of 79%Al₂O₃-21%Y₂O₃ coating. 195

Fig. 87. XRD patterns of 79%Al₂O₃-21%Y₂O₃ coatings heat-treated at 1000 to 1400℃ for 1h. 195

Fig. 88. SEM micrographs of cross-section of 79%Al₂O₃-21%Y₂O₃ coatings:... 196

Fig. 89. EDS analysis of 79%Al₂O₃-21%Y₂O₃ coatings heat-treated at (a) 1000℃ and (b) 1400℃ for 1h. 196

Fig. 90. SEM micrographs of cross-section at high magnification of 79%Al₂O₃-21%Y₂O₃ coating layers heat-treated at... 197

Fig. 91. TEM micrographs of 79%Al₂O₃-21%Y₂O₃ coatings heat treated at (a) 1000℃ and (b) 1400℃ for 1hour 197

Fig. 92. Density and microhardness of 79%Al₂O₃-21%Y₂O₃ coatings heat-treated at 1000 to 1400℃ for lh. 198

Fig. 93. SEM micrographs of surface of (a)62.5%Al₂O₃-37.5%Y₂O₃, (b)79%Al₂O₃-21%Y₂O₃ coatings before and after ICP-RIE. 199

Fig. 94. ICP-RIE plasma etching resistance of Al₂O₃-Y₂O₃ amorphous coatings. 200

Fig. 95. Chemical reaction products between Al₂O₃-Y₂O₃ amorphous coatings and CF4 plasma gas :... 201

Fig. 96. XPS analysis of (a)62.5%Al₂O₃-37.5%Y₂O₃ (b)79%Al₂O₃21%Y₂O₃ coatings before (thin line)/after(thick line) ICP-RIE. 201

Fig. 97. Etching rate if heat treated 79%Al₂O₃-21%Y₂O₃ coatings after ICP-RIE. 202

Fig. 98. XPS analysis of 79%Al₂O₃-21%Y₂O₃ :... 203

Fig. 99. XPS analysis of Al₂O₃-Y₂O₃ composite (62.5%Al₂O₃-37.5%Y₂O₃ and 79%Al₂O₃-21%Y₂O₃) coatings after(thick line) ICP-RIE. 203

Fig. 100. Schematic describing semi-conductor/LCD fabrication process. 206

Fig. 101. Schematics showing plasma density variation and potential gradient formation around wall or surface of parts. 209

Fig. 102. Schematic and characteristic of two different clamping. 210

Fig. 103. Some examples of semi-conductor or LCD fabrication equipments parts made of Al₂O₃(Al203) ceramic. 211

Fig. 104. Some examples of semi-conductor or LCD fabrication equipments parts made of quarts ceramic. 211

Fig. 105. Some examples of semi-conductor or LCD fabrication equipments parts made of metallic materials with ceramic coatings on it. 211

Fig. 106. Schematics describing how to increase life time of parts. 212

Fig. 107. Out appearance of plasma spray coating equipments, a) robot system, and b) control system. 213

Fig. 108. Metallic parts of dry etcher coated with ceramic(left) and nano structured coating(right). 213

Fig. 109. Ceramic parts of dry etcher or CVD thin film coating equipments coated with nano structured coating. 214

Fig. 110. Disk type metallic part coated with nano/amorphous structured coating, where numerous fine holes are formed. 214

Fig. 111. Magnified sectional view of coatings formed around holes, where coating exfoliation is seen(a) and no exfoliation is seen. 215

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
T000025653 전자형태로만 열람가능함 이용불가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기