본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
전자빔이용 전도성고분자, 카본 나노복합체 촉매의 개발 / 과학기술부 인기도
발행사항
[과천] : 과학기술부, 2008
청구기호
전자형태로만 열람가능함
자료실
해당자료 없음
형태사항
58 p. : 삽화, 도표, 사진 ; 30 cm
제어번호
MONO1200818425
주기사항
"대형연구시설공동이용활성화(전자빔)"의 연구과제임
주관연구기관: 한남대학교
최종연구보고서
주관연구책임자: 최성호
원문
미리보기

목차보기더보기

표제지

제출문

최종연구보고서 초록

요약문

SUMMARY(영문요약문)

CONTENTS(영문목차)

목차

제1장 연구개발과제의 개요 10

제2장 국내·외 기술개발 현황 12

제3장 연구개발수행 내용 및 결과 13

3-1. 전도성고분자/카본 나노복합체 촉매의 개발 14

3-2. 코아-쉘 전도성 고분자 나노복합체 촉매의 개발 32

제4장 연구개발 목표 달성도 및 관련 분야에의 기여도 54

제5장 연구개발결과의 활용계획 58

〈경제적 측면〉 58

〈사회적 측면〉 58

〈기술적 측면〉 58

제6장 연구개발과정에서 수집한 해외 과학기술정보 59

(1) 기존 특허내용과의 차이점 59

(2) 기개발된 외국의 기술과의 차이점 59

(3) 비교분석 결과 59

원자재에 대한 검토 분석 59

(1) 원자재의 국내·외 수급현황 (생산, 수요, 수출입량 등) 및 그 전망 59

(2) 원자재에 관련된 국내·외 기술의 현황분석 및 전망 59

제7장 참고문헌 60

3-1. 전도성고분자/카본 나노복합체 촉매의 개발 14

Table 1. Room-Temperature Conductivity of the purified MWNT, PPy-MWNT, PANI-MWNT, and PTh-MWNT Composites 26

Table 2. Contents and particle size of on Pt-Ru@CP-MWNT catalyst prepared by γ-irradiation 29

3-2. 코아-쉘 전도성 고분자 나노복합체 촉매의 개발 32

Table 1. Conductivity of the CSCBs and HSPBs by a standard 4-point probe technique at room temperature 41

Table 1. Shell thickness of PANI capsules sphere 44

Table 2. Conductivity of core-shell sphere and PHCS by a standard 4-point probe technique at room temperature 45

3-1. 전도성고분자/카본 나노복합체 촉매의 개발 14

Figure 1. SEM images of the MWNT (a), PCL-MWNT composite (b), PMA-MWNT composite (c), and PPy-MWNT composite (d). 15

Figure 2. TEM images of the MWNT (a), PCL-MWNT composite (b), PMA-MWNT composite (c), and PPy-MWNT composite (d). 16

Figure 3. TGA curves of the MWNT (a), PCL-MWNT composite (b), PMA-MWNT composite (c), and PPy-MWNT composite (d). 17

Figure 4. TEM images of the Pt-Ru@MWNT catalyst (a), Pt-Ru@PCL-MWNT catalysy (b), Pt-Ru@PMA-MWNT catalyst (c), and Pt-Ru@PPy-MWNT catalyst (d). 18

Figure 5. XRD patterns of the Pt-Ru@MWNT catalyst (a), Pt-Ru@PCL-MWNT catalysy (b), Pt-Ru@PMA-MWNT catalyst (c), and Pt-Ru@PPy-MWNT catalyst (d). 19

Figure 6. Co-stripping voltamograms for Pt-Ru@PCL-MWNT catalyst (a), Pt-Ru@PMA-MWNT catalysy (b), and Pt-Ru@PPy-MWNT catalyst (c) electrode in 0.5M H₂SO₄. 20

Figure 7. Cyclic voltamograms for the electrooxidation of methanol at Pt-Ru@PCL-MWNT catalyst (a), Pt-Ru@PMA-MWNT catalysy (b), and Pt-Ru@PPy-MWNT catalyst (c) electrode in 0.5M H₂SO₄. 21

Figure 1. SEM images of the purified MWNT (a), PPy-MWNT composite (b), PANI-MWNT composite (c), PTh-MWNT composite (d). 23

Figure 2. TEM images of the purified MWNT (a), PPy-MWNT composite (b), PANI-MWNT composite (c), PTh-MWNT composite (d). 24

Figure 3. FT-IR and TGA data of the purified MWNT (a), PPy-MWNT (b), PANI-MWNT (c), and PTh-MWNT (d). 25

Figure 4. TEM images of PT-Ru@MWNT (a), Pt-Ru@PPy-MWNT (b), Pt-Ru@PANI-MWNT (c), and Pt-Ru@PTh-MWNT (d). 27

Figure 5. XRD patterns of the Pt-Ru@MWNT (a), Pt-Ru@PPy-MWNT composite (b), Pt-Ru@PANI-MWNT composite (c), and Pt-Ru@PTh-MWNT composite (d). 28

Figure 6. Cyclic voltammograms of Pt-Ru@PPy-MWNT (a), Pt-Ru@PANI-MWNT (b) and Pt-Ru@PTh-MWNT (C), for CO stripping in 0.5M H₂SO₄. 30

Figure 7. Cyclic voltammograms of Pt-Ru@PPy-MWNT (a), Pt-Ru@PANI-MWNT (b) and Pt-Ru@PTh-MWNT (C) for 1.0M CH₃OH oxidation in 0.5M H₂SO₄. 31

3-2. 코아-쉘 전도성 고분자 나노복합체 촉매의 개발 32

Figure 1. Preparation prcoess of hollow conductive polymer ball by using surfactant as anchoring agent. 32

Figure 2. FE-SEM images of PS latex ball prepared by emulsifier-free emulsion polymerization. 33

Figure 3. SEM and TEM images of CSCBs with core-PS and shell-PPy(a,b), and TEM images of HSPBs(c). The SDS as anchoring agent was used for preparation of CSCBs. 34

Figure 4. SEM and TEM images of CSCBs with core-PS and shell-PPy(a,b), and TEM images of HSPBs(c). The PVP as anchoring agent was used for preparation of CSCBs. 35

Figure 5. Preparation procedure of HSPBs without surfactant as anchoring agent. 36

Figure 6. SEM and TEM image of CSCB with core-PSMA and shell-PPy (a,b) and TEM image of HSPB (c). 37

Figure 7. SEM and TEM image of CSCBs with core-PSVB and shell-PPy (a,b) and TEM image of HSPBs (c). 38

Figure 8. SEM and TEM image of CSCBs with core-PSVC and shell-PPy (a,b) and TEM image of HSPBs (c). 39

Figure 9. TEM image of PSSS (a), SEM image of CSCB with core-PSSS and shell-PPy (b), and TEM image of HSPB (c). 40

Fig. 1. SEM images of core ball of PSVB (a), PSVC (b), PSMA (c), core-PSVB shell-PANI (d), core-PSVC shell-PANI (e), and core-PSMA shell-PANI(f) spheres. 42

Fig. 2. TEM images of core-PSVB shell-PANI (a), core-PSVC shell-PANI (e), core-PSMA shell-PANI (f) spheres, PHCS obtained from Fig. 2(a)(c), PHCS obtained from Fig. 2(b)(d). 43

Fig. 3. TEM image of Au@CSB with PSMA (a), Pt-Sn@CSB with PSMA (b), Au@PHCS (c) and Pt-Sn@PHCS (d) prepared by γ-irradiation. 46

Fig. 4. TEM image of Au@CSB with PSMA (a), Pt-Sn@CSB with PSMA (b), Au@PHCS (c) and Pt-Sn@PHCS (d) prepared by chemical reduction using NaBH₄ assisted with ultrasonic irradiation. 47

Fig. 5. XRD patterns of Au@CSB with PSMA and AU@PHCS catalyst prepared by γ-irradiation (a) and chemical reduction assisted with ultrasonic irradiation (b). 48

Fig. 6. XRD patterns of Au@CSB with PSMA and Pt-Sn@PHCS catalyst prepared by γ-irradiation (a) and chemical reduction assisted with ultrasonic irradiation (b). 49

Fig. 7. Cyclic voltammograms for the CO stripping of Au@CSB with PSMA catalyst(a), Au@PHCS catalysts prepared by γ-irradiation(b), Au@CSB with PSMA catalyst (c), Au@PHCS catalyst prepared by chemical reduction assisted with ultrasoic irradiation (d) in 0.5M H₂SO₄. 50

Fig. 8. Cyclic voltammograms for the CO stripping of Pt-Sn@CSB with PSMA catalyst(a), Pt-Sn@PHCS catalysts prepared by γ-irradiation(b), Pt-Sn@CSB with PSMA catalyst (c), Pt-Sn@PHCS catalyst prepared by chemical reduction assisted with ultrasoic irradiation (d) in 0.5M H₂SO₄. 51

Fig. 9. Cyclic voltammograms for the ethanol oxidation of Au@CSB with PSMA catalyst(a), Au@PHCS catalysts prepared by γ-irradiation(b), Au@CSB with PSMA catalyst (c), Au@PHCS catalyst prepared by chemical reduction assisted with ultrasoic irradiation (d) in 0.5M H₂SO₄ with 1.0M ethanol. 52

Fig. 10. Cyclic voltammograms for the ethanol oxidation of Pt-Sn@CSB with PSMA catalyst(a), Pt-Sn@PHCS catalysts prepared by γ-irradiation(b), Pt-Sn@CSB with PSMA catalyst (c), Pt-Sn@PHCS catalyst prepared by chemical reduction assisted with ultrasoic irradiation (d) in 0.5M H₂SO₄ with 1.0M ethanol. 53

Scheme 1. Preparation procedure of polymer-NMWT composites. 14

Scheme 1. Preparation procedure of Pt-Ru@C-MWNT catalysts by γ-irradiation. 22

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기