권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
제출문
요약문
SUMMARY
TABLE OF CONTENTS
목차
제1장 서론 26
제1절 연구개발의 중요성 26
1. 기술적 측면 26
2. 산업·경제적 측면 31
3. 정책적 측면 32
제2절 연구개발시 예상효과 및 활용방안 33
1. 기술적 측면 33
2. 산업·경제적 측면 34
3. 정책적 측면 35
4. 활용방안 37
제2장 연구개발의 목표 및 내용 40
제1절 최종연구목표 40
1. 최종목표 40
2. 연차별 개발기술의 정량적 목표 및 평가방법 40
제2절 연차별 세부연구목표 및 내용 43
1. 1차년도 43
2. 2차년도(최종년도) 49
제3절 연구개발 추진 체계 51
제3장 국내·외 관련기술현황 52
제1절 국외기술현황 52
1. 혐기성 메탄에너지 생산기술 52
2. 발효수소 생산기술 60
3. 미생물 연료전지기술 (Microbial fuel cells, MFCs) 62
제2절 국내기술현황 63
제3절 기존 개발기술의 한계점 및 재고되어야 할 주요사항 68
제4장 연구개발 수행내용 및 결과 72
제1절 문헌연구 72
1. 혐기성 바이오 에너지의 생산특성 72
2. 혐기성 메탄 에너지 75
3. 발효수소 에너지 85
4. 미생물 연료전지(microbial fuel cells, MFCs) 97
제2절 기질의 특성에 따른 발효수소 에너지 생산특성 106
1. 탄수화물계 용존성 유기물질(sucrose) 106
2. 슬러리형 축산폐기물(slurry-type piggery waste) 122
3. 유기성 고형 폐기물(음식물 쓰레기, food waste) 127
4. 발효수소장벽(hydrogen barrier)로서 pH 및 알칼리도 영향 135
제3절 수소발효 유출수로 부터의 고율 메탄에너지의 생산 145
1. 탄수화물계 용존성 유기물질(sucrose) 수소발효 유출수 146
2. 슬러리형 축산폐기물(slurry-type piggery waste) 산발효 유출수 152
3. 유기성 고형폐기물(음식물 쓰레기)를 이용한 수소발효 유출수 160
제4절 미생물 연료전지(microbial fuel cells)의 운전특성 168
1. 탄수화물계 용존성 유기물질(sucrose) 169
2. 슬러리형 축산폐기물(slurry-type piggery waste) 183
3. 유기성 고형폐기물(음식물 쓰레기)를 이용한 수소발효 유출수 192
제5절 공정별 물질수지 및 scale up을 위한 설계요소 검토 206
1. 수소 및 메탄발효공정의 설계요소 및 물질수지 206
2. 기질에 따른 미생물연료전지의 운전특성 비교 212
제5장 결론 214
참고문헌 218
Appendix 232
Appendix A. Batch test protocol for fermentative biohydrogen production 233
Appendix B. GC standard curve protocol for H₂, CO₂ and CH₄ 236
Appendix C. HPLC standard curve protocol for VFAs 240
Appendix D. Classification and phylogeny of hydrogenases 248
Appendix E. COD equivalent of VFAs and biogas(H₂, CH₄) 256
Appendix F. Elemental analysis of foodwaste and COD equivalent 258
Appendix G. Calculation of Gibb's Free Energy for hydrogen production 263
Appendix H. Stoichiometric hydrogen yields 264
Appendix I. Mass balance in two-in-series H₂/CH₄ fermentation 267
Fig. 1.1. Anaerobic methanogenic pathway(McCarty, 1981). 27
Fig. 1.2. Electricity production in microbial fuel cells (Logan, 2004) 28
Fig. 1.3. Novel concepts for energy production from organic wastes 29
Fig. 1.4. Treatment status of municipal sewage sludge and food waste(환경부, 2007a, 2007 b) 32
Fig. 1.5. Typical cost for electricity generation (Gross et al., 2003) 35
Fig. 1.6. Energy consumption(산자부, 2001) 36
Fig. 1.7. CO₂ emission(산자부, 2000) 36
Fig. 1.8. Use of renewable energy (산업자원부, 2003) 37
Fig. 2.1. Schematic processes for energy production from organic wastes 44
Fig. 2.2. Example of integrated bioenergy process(ADEPT) by using elutriation-type fermenter (Ahn et al., 2004 ; Kim et al., 2001 ; 안영호 등, 2004) 46
Fig. 2.3. Example of integrated bioenergy process(ALEB) by using leaching bed-type fermenter (안영호 등, 2004) 47
Fig. 3.1. Overview of anaerobic fermentation system -Commercial plants are indicated in italics (Reith et al., 2003). 53
Fig. 3.2. Dry-type fermentation systems 56
Fig. 3.3. two-stage wet-type fermentation process 57
Fig. 3.4. Sequencing batch type leaching bed process 58
Fig. 3.5. Typical process for biomethanization of organic fraction of municial solid wastes (OFMSW) 58
Fig. 3.6. Anaerobic biotechnology for producing methane from manure (USEPA, 1997) 59
Fig. 3.7. Schematic process of proprietary anaerobic biotechnology for manure 66
Fig. 4.1. Electricity(Electrricity) production from anaerobic byproducts 75
Fig. 4.2. Substrate Characterization for anaerobic methanogenic process (Ristow, et al., 2006). 76
Fig. 4.3. OLR and COD concentration for design of anaerobic process 77
Fig. 4.4. OLR and COD concentration for UASB and EGSB 78
Fig. 4.5. HRT and COD concentration for Biothane UASB 78
Fig. 4.6. Construction cost for anaerobic process 79
Fig. 4.7. Treatment efficiencies as a function of organic loading grate in full-scale plant 80
Fig. 4.8. Treatment efficiencies as a function of organic loading grate in full scale Biothane UASB (summarized by Ahn, 1995) 81
Fig. 4.9. Phylogeny of anaerobic methanogens, domain Archaea (Garcia et al., 2000). 82
Fig. 4.10. Anaerobic granulation (Ahn, 1995, 2004) 83
Fig. 4.11. Anaerobic granulation mechanism proposed by Ahn (1995, 2000) 84
Fig. 4.12. Initial pH effect on hydrogen yield 89
Fig. 4.13. Temperature effect on hydrogen yield 90
Fig. 4.14. OLR vs. hydrogen yield 92
Fig. 4.15. HRT vs. hydrogen yield 93
Fig. 4.16. Phylogenic tree of microorganisms with [NiFe]-H₂ases(David et al, 2007) 94
Fig. 4.17. Principle of MFCs (Rabaey and Verstraate, 2005) 98
Fig. 4.18. Type of MFCs used in studies 99
Fig. 4.19. MFCs used for continuous operation 99
Fig. 4.20. Nanowires by exo-electrogens (Gorby et al., 2006) 100
Fig. 4.21. Substrate affinity of various electrogens (Lovley et al., 1993 ; Finneran et al., 2003). 102
Fig. 4.22. Phylogenic tree of exo-electrogens (Ahn, unpublished data) 103
Fig. 4.23. Power production for MFCs shown over time on the basis of published results(Logan, 2008). 105
Fig. 4.24. Batch experimental apparatus. 107
Fig. 4.25. Setup of laboratory UASB-type hydrogen fermenter (A, B) and hydrogen fermentation granular sludge (C) 108
Fig. 4.26. Initial pH effects on batch hydrogen fermentation(Initial COD = 16 g/L except for Control reactor) 113
Fig. 4.27. pH profiles in batch hydrogen fermentation 114
Fig. 4.28. Continuous performance of sequencing batch type CSTR fermenter 116
Fig. 4.29. Biogas profiles in sequencing batch type CSTR fermenter 116
Fig. 4.30. Performance of UASB-type hydrogen fermenter 117
Fig. 4.31. Hydrogen production vs. organic loading rate 118
Fig. 4.32. Schematic diagram of laboratory elutriation-type fermenter 123
Fig. 4.33. Performance of laboratory elutriation-type fermenter using slurry-type piggery waste, (A-1, A-2) pH 6 ; (B-1, B-2) pH 8.2. 125
Fig. 4.34. Schematic diagram of leaching bed type hydrogen fermenter 128
Fig. 4.35. Performance of leaching bed hydrogen fermenter(pH 6) 131
Fig. 4.36. Performance of leaching bed hydrogen fermenter(pH 9) 132
Fig. 4.37. Effect of pH and alkalinity in batch hydrogen fermentation 138
Fig. 4.38. Acetate and butyrate in batch hydrogen fermentation 140
Fig. 4.39. Distribution of carbonic acid fractions as percentages of the total carbon contents, CT(이미지참조). The values are calculated for the temperature of 5 and 25℃ and for the salinities of 0 and 35‰ as a function of the pH (IAEA, 2003) 141
Fig. 4.40. pH vs. alkalinity for CO₂ in contact with water (Speece, 1996). 141
Fig. 4.41. Lactate and propionate in batch hydrogen fermentation 143
Fig. 4.42. Schematic diagram of laboratory methanogenic UASB reactor (A, B) and granular sludge (C) 146
Fig. 4.43. Operational results of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 148
Fig. 4.44. Organic removal in of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 149
Fig. 4.45. pH and bicarbonate alkalinity profiles in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 163
Fig. 4.46. Gas production and COD removal in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 164
Fig. 4.47. Methane production over time in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 164
Fig. 4.48. Influent and Effluent of content(VFAs) by OLR change 165
Fig. 4.49. MFCs reactor setup 171
Fig. 4.50. Power density over operating time (substrate : sucrose) 174
Fig. 4.51. Comparative MFCs performance (substrate : sucrose) 175
Fig. 4.52. Polarization curve (substrate : sucrose). 177
Fig. 4.53. Batch profiles (HT-W, substrate : sucrose, R=980Ω) 180
Fig. 4.54. Cell potential profiles over time in sequencing batch mode (NHT-W : 56Ω vs. NHT-NE : 470Ω) 181
Fig. 4.55. Polarization curve (substrate : piggery waste) 186
Fig. 4.56. Batch profiles at R=980Ω (substrate : piggery waste,) 188
Fig. 4.57. Cell potential profiles over time in sequencing batch mode MFCs(R=980Ω) 190
Fig. 4.58. Batch profiles in cell potential(A) and power density(B) (substrate : hydrogen fermentation effluent of food waste) 195
Fig. 4.59. Polarization curve (substrate : hydrogen fermentation effluent of food waste) 196
Fig. 4.60. Batch profiles at R=980Ω (substrate : hydrogen fermentation effluent of food waste) 198
Fig. 4.61. Power density profiles over time (R=56Ω)(substrate : hydrogen fermentation effluent of food waste) 200
Fig. 4.62. MFCs performance at organic loading rate (R=56Ω) (substrate : hydrogen fermentation effluent of food waste) 200
Fig. 4.63. Sequencing bach profile in cell potential(A) and power density(B) over time (substrate : hydrogen fermentation effluent of food waste) 203
Fig. 4.64. Mass balance on laboratory experimental data (sucrose) 207
Fig. 4.65. Mass balance for treatment capacity of 1 m³/d (substrate : sucrose) 207
Fig. 4.66. Mass balance for treatment capacity of 1 m³/d (substrate : slurry-type piggery waste) 209
Fig. 4.67. Mass balance on laboratory experimental data (food waste) 211
Fig. 4.68. Mass balance for treatment capacity of 1 m³/d (substrate : food waste) 211
Fig. 5.1. Proposed anaerobic biotechnology for enhancing bioenergy production 215
등록번호 | 청구기호 | 권별정보 | 자료실 | 이용여부 |
---|---|---|---|---|
T000029655 | 전자형태로만 열람가능함 | 전자자료 | 이용불가 |
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.