• 저자명 참조
  • 용어관계사전
  • 검색히스토리
  • 옵션유지
  • 자동완성
  • 상세검색

    자료구분

  • 검색: 1,213 ms /
통합검색 : "MONO1200946911" (전체 1건)

추천

  • 자료명/저자사항 고성능 혐기성 생물전환기술을 이용한 바이오 에너지 및 동력생산의 향상에 관한 연구 / 산업자원부 [편] 이용률 보통
  • 발행사항 [과천] : 산업자원부, 2008
  • 청구기호 전자형태로만 열람가능함
  • 자료실 전자자료
  • 형태사항 xxiv, 206, xxxviii p. : 삽화, 도표, 사진 ; 30 cm
  • UCI G901:A-0006223844 UCI공유하기
  • 제어번호 MONO1200946911
  • 주기사항

    사업주관기관: 영남대학교 산학협력단

    수행책임자: 안영호

  • 원문 원문보기 |다운로드
  • 미리보기
    • 원문이미지 1
    • 원문이미지 2
    • 원문이미지 3
    • 원문이미지 4
    • 원문이미지 5

이용현황보기

이용현황보기 목록에 대한 테이블로 등록번호,권별정보,자료실,이용여부 로 구성
등록번호 청구기호 권별정보 자료실 이용여부
T000029655 전자형태로만 열람가능함 전자자료 이용불가

목차보기

표제지

제출문

요약문

SUMMARY

TABLE OF CONTENTS

목차

제1장 서론 26

제1절 연구개발의 중요성 26

1. 기술적 측면 26

2. 산업·경제적 측면 31

3. 정책적 측면 32

제2절 연구개발시 예상효과 및 활용방안 33

1. 기술적 측면 33

2. 산업·경제적 측면 34

3. 정책적 측면 35

4. 활용방안 37

제2장 연구개발의 목표 및 내용 40

제1절 최종연구목표 40

1. 최종목표 40

2. 연차별 개발기술의 정량적 목표 및 평가방법 40

제2절 연차별 세부연구목표 및 내용 43

1. 1차년도 43

2. 2차년도(최종년도) 49

제3절 연구개발 추진 체계 51

제3장 국내·외 관련기술현황 52

제1절 국외기술현황 52

1. 혐기성 메탄에너지 생산기술 52

2. 발효수소 생산기술 60

3. 미생물 연료전지기술 (Microbial fuel cells, MFCs) 62

제2절 국내기술현황 63

제3절 기존 개발기술의 한계점 및 재고되어야 할 주요사항 68

제4장 연구개발 수행내용 및 결과 72

제1절 문헌연구 72

1. 혐기성 바이오 에너지의 생산특성 72

2. 혐기성 메탄 에너지 75

3. 발효수소 에너지 85

4. 미생물 연료전지(microbial fuel cells, MFCs) 97

제2절 기질의 특성에 따른 발효수소 에너지 생산특성 106

1. 탄수화물계 용존성 유기물질(sucrose) 106

2. 슬러리형 축산폐기물(slurry-type piggery waste) 122

3. 유기성 고형 폐기물(음식물 쓰레기, food waste) 127

4. 발효수소장벽(hydrogen barrier)로서 pH 및 알칼리도 영향 135

제3절 수소발효 유출수로 부터의 고율 메탄에너지의 생산 145

1. 탄수화물계 용존성 유기물질(sucrose) 수소발효 유출수 146

2. 슬러리형 축산폐기물(slurry-type piggery waste) 산발효 유출수 152

3. 유기성 고형폐기물(음식물 쓰레기)를 이용한 수소발효 유출수 160

제4절 미생물 연료전지(microbial fuel cells)의 운전특성 168

1. 탄수화물계 용존성 유기물질(sucrose) 169

2. 슬러리형 축산폐기물(slurry-type piggery waste) 183

3. 유기성 고형폐기물(음식물 쓰레기)를 이용한 수소발효 유출수 192

제5절 공정별 물질수지 및 scale up을 위한 설계요소 검토 206

1. 수소 및 메탄발효공정의 설계요소 및 물질수지 206

2. 기질에 따른 미생물연료전지의 운전특성 비교 212

제5장 결론 214

참고문헌 218

Appendix 232

Appendix A. Batch test protocol for fermentative biohydrogen production 233

Appendix B. GC standard curve protocol for H₂, CO₂ and CH₄ 236

Appendix C. HPLC standard curve protocol for VFAs 240

Appendix D. Classification and phylogeny of hydrogenases 248

Appendix E. COD equivalent of VFAs and biogas(H₂, CH₄) 256

Appendix F. Elemental analysis of foodwaste and COD equivalent 258

Appendix G. Calculation of Gibb's Free Energy for hydrogen production 263

Appendix H. Stoichiometric hydrogen yields 264

Appendix I. Mass balance in two-in-series H₂/CH₄ fermentation 267

Table 2.1. Substrate and fermenter configurations 45

Table 3.1. Anaerobic digester plants (IEA, 2001) 52

Table 3.2. Pretreatment technology for hydrolysis/solubilization (환경부, 2005) 54

Table 3.3. Anaerobic biotechnology for liquid and slurry-type organic waste 55

Table 3.4. Anaerobic biotechnology for solid-type organic waste (Mata, 2003). 56

Table 3.5. Chracteristics of digester technology in manure treatment (USEPA, 1997) 59

Table 3.6. Combustion characteristics of gas and exhaust gas 60

Table 3.7. Proprietary anaerobic biotechnology in Korea 64

Table 3.8. Operational characteristics in integrated anaerobic biotechnology 65

Table 3.9. Operational results of D-TABS technology treating manure(홍승모, 2006) 67

Table 3.10. Comparative performance of high rate anaerobic biotechnology treating piggery waste (Ahn et al., 2004) 67

Table 4.1. Anaerobic microbial conversion 73

Table 4.2. Comparative electrical conversion of bioenergy produced from biowaste. 74

Table 4.3. UASB/EGSB installation in KOREA (Ahn, 2001) 79

Table 4.4. Anaerobic granulation theories (Hulshoff Pol et al., 2004) 84

Table 4.5. Catabolic H₂-releasing reactions of substrates relevant, relevant H₂-consuming reactions and CH₄ production 86

Table 4.6. Overview of the power output delivered by pure and mixted culture MFCs without mediator addition 102

Table 4.7. Advantages and disadvantages of MFCs 105

Table 4.8. Compositions of Trace Salt Stock Solution and Salt Stock Solution (Ahn, 1995) 109

Table 4.9. Composition of Phosphate Buffer Solution (Lovley et al, 1984) 110

Table 4.10. Compositions of Mineral and Vitamin (Lovley et al, 1984) 110

Table 4.11. Operational conditions of laboratory UASB-type hydrogen fermenter 112

Table 4.12. Analytical Methods 112

Table 4.13. Operational result of UASB-type hydrogen fermenter 119

Table 4.14. Characteristics of raw piggery waste 123

Table 4.15. Operational conditions of laboratory elutriation-type fermenter 124

Table 4.16. Characteristics of food waste used in the experiments 129

Table 4.17. Operational conditions of leaching bed hydrogen fermenter 130

Table 4.18. Operational characteristics of leaching bed hydrogen fermenter using food waste 133

Table 4.19. Operational conditions for serum bottle activity test 137

Table 4.20. Substrate characteristics and operational conditions for methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 147

Table 4.21. Steady state results of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 150

Table 4.22. Hydrolysis and acidogenesis in elutriated acid fermentation 155

Table 4.23. Solubilization rate at various pH and temperature conditions. 155

Table 4.24. Accumulated VFAs in elutriation batch fermentation 156

Table 4.25. VFAs concentration in mesophilic ADEPT process (influent COD 57 g/L) 157

Table 4.26. Comparative performance of ADEPT process treating slurry-type piggery waste 158

Table 4.27. Reduction of fecal coliform in elutriated acid fermentation 159

Table 4.28. Substrate characteristics and operational conditions for methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 162

Table 4.29. Steady state results of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 166

Table 4.30. MFCs reactor properties 172

Table 4.31. Steady state results of MFCs (substrate : sucrose) 174

Table 4.32. Summarized performance at various resistances (substrate : sucrose) 178

Table 4.33. Effluent quality in batch mode MFCs (HT-W, substrate : sucrose, R=980Ω) 180

Table 4.34. Comparative results in sequencing batch mode (Substrate : sucrose) 181

Table 4.35. Characteristics of piggery waste as substrate 184

Table 4.36. Summarized performance at various resistances (substrate : piggery waste) 187

Table 4.37. Effluent quality at R=980Ω (substrate : piggery waste) 188

Table 4.38. Operational results in sequencing batch mode MFCs (substrate : piggery waste) 190

Table 4.39. Characteristics of hydrogen fermentation effluent (raw substrate : food waste) 194

Table 4.40. Summarized performance at various resistances (substrate : hydrogen fermentation effluent of food waste) 197

Table 4.41. Effluent quality at R=980Ω (substrate : hydrogen fermentation effluent of food waste,) 198

Table 4.42. Summarized performance at various organic loading rate (R=56Ω, substrate : hydrogen fermentation effluent of food waste) 201

Table 4.43. Comparative results in sequencing batch mode MFCs (substrate : hydrogen fermentation effluent of food waste) 204

Table 4.44. Fermentative hydrogen and methane production from carbohydrate-type substrate (sucrose) 206

Table 4.45. Methane production from slurry-type piggery waste 208

Table 4.46. Fermentative hydrogen and methane production from food waste 210

Table 4.47. Comparative performance of microbial fuel cells 212

Table 5.1. Comparative bioenergy production 216

Fig. 1.1. Anaerobic methanogenic pathway(McCarty, 1981). 27

Fig. 1.2. Electricity production in microbial fuel cells (Logan, 2004) 28

Fig. 1.3. Novel concepts for energy production from organic wastes 29

Fig. 1.4. Treatment status of municipal sewage sludge and food waste(환경부, 2007a, 2007 b) 32

Fig. 1.5. Typical cost for electricity generation (Gross et al., 2003) 35

Fig. 1.6. Energy consumption(산자부, 2001) 36

Fig. 1.7. CO₂ emission(산자부, 2000) 36

Fig. 1.8. Use of renewable energy (산업자원부, 2003) 37

Fig. 2.1. Schematic processes for energy production from organic wastes 44

Fig. 2.2. Example of integrated bioenergy process(ADEPT) by using elutriation-type fermenter (Ahn et al., 2004 ; Kim et al., 2001 ; 안영호 등, 2004) 46

Fig. 2.3. Example of integrated bioenergy process(ALEB) by using leaching bed-type fermenter (안영호 등, 2004) 47

Fig. 3.1. Overview of anaerobic fermentation system -Commercial plants are indicated in italics (Reith et al., 2003). 53

Fig. 3.2. Dry-type fermentation systems 56

Fig. 3.3. two-stage wet-type fermentation process 57

Fig. 3.4. Sequencing batch type leaching bed process 58

Fig. 3.5. Typical process for biomethanization of organic fraction of municial solid wastes (OFMSW) 58

Fig. 3.6. Anaerobic biotechnology for producing methane from manure (USEPA, 1997) 59

Fig. 3.7. Schematic process of proprietary anaerobic biotechnology for manure 66

Fig. 4.1. Electricity(Electrricity) production from anaerobic byproducts 75

Fig. 4.2. Substrate Characterization for anaerobic methanogenic process (Ristow, et al., 2006). 76

Fig. 4.3. OLR and COD concentration for design of anaerobic process 77

Fig. 4.4. OLR and COD concentration for UASB and EGSB 78

Fig. 4.5. HRT and COD concentration for Biothane UASB 78

Fig. 4.6. Construction cost for anaerobic process 79

Fig. 4.7. Treatment efficiencies as a function of organic loading grate in full-scale plant 80

Fig. 4.8. Treatment efficiencies as a function of organic loading grate in full scale Biothane UASB (summarized by Ahn, 1995) 81

Fig. 4.9. Phylogeny of anaerobic methanogens, domain Archaea (Garcia et al., 2000). 82

Fig. 4.10. Anaerobic granulation (Ahn, 1995, 2004) 83

Fig. 4.11. Anaerobic granulation mechanism proposed by Ahn (1995, 2000) 84

Fig. 4.12. Initial pH effect on hydrogen yield 89

Fig. 4.13. Temperature effect on hydrogen yield 90

Fig. 4.14. OLR vs. hydrogen yield 92

Fig. 4.15. HRT vs. hydrogen yield 93

Fig. 4.16. Phylogenic tree of microorganisms with [NiFe]-H₂ases(David et al, 2007) 94

Fig. 4.17. Principle of MFCs (Rabaey and Verstraate, 2005) 98

Fig. 4.18. Type of MFCs used in studies 99

Fig. 4.19. MFCs used for continuous operation 99

Fig. 4.20. Nanowires by exo-electrogens (Gorby et al., 2006) 100

Fig. 4.21. Substrate affinity of various electrogens (Lovley et al., 1993 ; Finneran et al., 2003). 102

Fig. 4.22. Phylogenic tree of exo-electrogens (Ahn, unpublished data) 103

Fig. 4.23. Power production for MFCs shown over time on the basis of published results(Logan, 2008). 105

Fig. 4.24. Batch experimental apparatus. 107

Fig. 4.25. Setup of laboratory UASB-type hydrogen fermenter (A, B) and hydrogen fermentation granular sludge (C) 108

Fig. 4.26. Initial pH effects on batch hydrogen fermentation(Initial COD = 16 g/L except for Control reactor) 113

Fig. 4.27. pH profiles in batch hydrogen fermentation 114

Fig. 4.28. Continuous performance of sequencing batch type CSTR fermenter 116

Fig. 4.29. Biogas profiles in sequencing batch type CSTR fermenter 116

Fig. 4.30. Performance of UASB-type hydrogen fermenter 117

Fig. 4.31. Hydrogen production vs. organic loading rate 118

Fig. 4.32. Schematic diagram of laboratory elutriation-type fermenter 123

Fig. 4.33. Performance of laboratory elutriation-type fermenter using slurry-type piggery waste, (A-1, A-2) pH 6 ; (B-1, B-2) pH 8.2. 125

Fig. 4.34. Schematic diagram of leaching bed type hydrogen fermenter 128

Fig. 4.35. Performance of leaching bed hydrogen fermenter(pH 6) 131

Fig. 4.36. Performance of leaching bed hydrogen fermenter(pH 9) 132

Fig. 4.37. Effect of pH and alkalinity in batch hydrogen fermentation 138

Fig. 4.38. Acetate and butyrate in batch hydrogen fermentation 140

Fig. 4.39. Distribution of carbonic acid fractions as percentages of the total carbon contents, CT(이미지참조). The values are calculated for the temperature of 5 and 25℃ and for the salinities of 0 and 35‰ as a function of the pH (IAEA, 2003) 141

Fig. 4.40. pH vs. alkalinity for CO₂ in contact with water (Speece, 1996). 141

Fig. 4.41. Lactate and propionate in batch hydrogen fermentation 143

Fig. 4.42. Schematic diagram of laboratory methanogenic UASB reactor (A, B) and granular sludge (C) 146

Fig. 4.43. Operational results of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 148

Fig. 4.44. Organic removal in of methanogenic UASB reactor (substrate : hydrogen fermentation effluent using sucrose) 149

Fig. 4.45. pH and bicarbonate alkalinity profiles in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 163

Fig. 4.46. Gas production and COD removal in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 164

Fig. 4.47. Methane production over time in methanogenic UASB reactor (substrate : hydrogen fermentation effluent using food waste) 164

Fig. 4.48. Influent and Effluent of content(VFAs) by OLR change 165

Fig. 4.49. MFCs reactor setup 171

Fig. 4.50. Power density over operating time (substrate : sucrose) 174

Fig. 4.51. Comparative MFCs performance (substrate : sucrose) 175

Fig. 4.52. Polarization curve (substrate : sucrose). 177

Fig. 4.53. Batch profiles (HT-W, substrate : sucrose, R=980Ω) 180

Fig. 4.54. Cell potential profiles over time in sequencing batch mode (NHT-W : 56Ω vs. NHT-NE : 470Ω) 181

Fig. 4.55. Polarization curve (substrate : piggery waste) 186

Fig. 4.56. Batch profiles at R=980Ω (substrate : piggery waste,) 188

Fig. 4.57. Cell potential profiles over time in sequencing batch mode MFCs(R=980Ω) 190

Fig. 4.58. Batch profiles in cell potential(A) and power density(B) (substrate : hydrogen fermentation effluent of food waste) 195

Fig. 4.59. Polarization curve (substrate : hydrogen fermentation effluent of food waste) 196

Fig. 4.60. Batch profiles at R=980Ω (substrate : hydrogen fermentation effluent of food waste) 198

Fig. 4.61. Power density profiles over time (R=56Ω)(substrate : hydrogen fermentation effluent of food waste) 200

Fig. 4.62. MFCs performance at organic loading rate (R=56Ω) (substrate : hydrogen fermentation effluent of food waste) 200

Fig. 4.63. Sequencing bach profile in cell potential(A) and power density(B) over time (substrate : hydrogen fermentation effluent of food waste) 203

Fig. 4.64. Mass balance on laboratory experimental data (sucrose) 207

Fig. 4.65. Mass balance for treatment capacity of 1 m³/d (substrate : sucrose) 207

Fig. 4.66. Mass balance for treatment capacity of 1 m³/d (substrate : slurry-type piggery waste) 209

Fig. 4.67. Mass balance on laboratory experimental data (food waste) 211

Fig. 4.68. Mass balance for treatment capacity of 1 m³/d (substrate : food waste) 211

Fig. 5.1. Proposed anaerobic biotechnology for enhancing bioenergy production 215

[{value=MONO}]

  • 외부기관 원문 발행년도 [PublicationYear] :2008
  • 자료명/저자사항 [_TI] :고성능 혐기성 생물전환기술을 이용한 바이오 에너지 및 동력생산의 향상에 관한 연구 / 산업자원부 [편]
  • 자료명/저자사항 [TI] :고성능 혐기성 생물전환기술을 이용한 바이오 에너지 및 동력생산의 향상에 관한 연구 / 산업자원부 [편]
  • 발행사항 [PublicationStatement] :[과천] : 산업자원부, 2008
  • 청구기호 [CC] :전자형태로만 열람가능함
  • 자료실 [DataCenter] :전자자료
  • 형태사항 [Form] :xxiv, 206, xxxviii p. : 삽화, 도표, 사진 ; 30 cm
  • 총서사항 [AseriesStatement] :
  • UCI [UCI] :G901:A-0006223844
  • 표준번호/부호 [ISSN] :
  • 제어번호 [CN] :MONO1200946911
  • 주기사항 [CycleMatter] :

    사업주관기관: 영남대학교 산학협력단

    수행책임자: 안영호

  • 원문유무 [ISDB] :1
  • 배가코드 [SL] :ER
  • 커버이미지 [COVER] :/thumb/MONO/1200/9469/MONO1200946911/
  • 목차 유형 [TOCPATH] :/data-db1-pdf/monoresh001/resh200909/MONO094016/MONO1200946911/MONO1200946911.toc
  • 초록 유형 [ABSPATH] :
  • 해제 유형 [EXPPATH] :
  • 동일저자자료 [SameAuth] :
  • 이용현황 [UsingStatus] :Y
  • 별치기호 구분 코드 [CCG] :
  • 원문유형1 [WT1] :P
  • 원문유형2 [WT2] :
  • 음성지원 [TT1] :0
  • 다운로드 가능여부 [DOWN] :Y
  • 표지이미지 유무 [ISCOV] :0
  • 표지이미지 경로 [COVPATH] :
  • 저자프로필 유무 [ISPRO] :0
  • 인기도 [PPR] :6
  • 관련자료 [KRMLINK] :
  • 발행지 [PP] :[과천]
  • 발행자 [Publisher] :산업자원부
  • 모체자료 [PregnantMotherData] :
  • 발행년 [PD1] :2008
  • 판사항 [EditionStatement] :
  • 부록/보유자료 [SupplementAndHoldingMaterials] :
  • 이용가능한 다른 형태자료 [OtherData] :
  • 닫기 이전 다음
    닫기
    이전 다음