본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
용액으로부터 유해이온 제거를 위한 유리재료 개발 / 환경부 [편] 인기도
발행사항
[과천] : 환경부, 2009
청구기호
전자형태로만 열람가능함
형태사항
221 p. : 삽화, 도표, 사진 ; 30 cm
제어번호
MONO1200955201
주기사항
"오염물질 제거효율 향상 소재·제품 개발"의 연구과제임
주관연구기관: 인하대학교
최종보고서(완결본)
연구책임자: 김철영
원문
미리보기

목차보기더보기

표제지

제출문

보고서 초록[개인신상정보 삭제]

목차

제1장 서론 19

1. 연구개발의 중요성 및 필요성 19

2. 연구개발의 국내외 현황 26

3. 연구개발대상 기술의 차별성 33

제2장 연구개발의 목표 및 내용 35

1. 연구의 최종목표 35

2. 연도별 연구개발의 목표 및 평가 방법 35

3. 연도별 추진체계 37

제3장 연구개발의 결과 및 활용계획 38

제1절 실험방법 38

1. 유리 용융 및 시편의 제작 38

2. 반응 용액의 제조 및 용액 반응 실험 38

3. 용액 반응 후 유리 시편의 표면분석 41

4. 용액 내의 이온 농도 측정 42

제2절 PO₄ 이온 제거를 위한 유리재료 개발 44

1. 붕규산염 유리의 PO₄ 이온 제거 44

2. 붕규산염 유리의 PO₄ 이온 제거 기구 48

3. 유리 분말시편의 입도 변화에 따른 PO₄ 이온 제거 54

4. 유리의 CaO 함량에 따른 PO₄ 이온 제거 57

5. 초기 이온농도 변화 60

6. 반응 용액의 초기 pH 영향 60

7. 정적·동적 반응조건의 영향 63

8. 표면적의 영향 67

9. silica-rich 층의 확인 67

10. 용액에 추가로 첨가된 PO₄ 이온 제거 실험 71

11. 유리 조성중의 B₂O₃함량이 PO₄ 이온 제거에 미치는 영향 73

12. 유리 분말 양의 변화 80

13. 실제 폐수에 대한 실험 84

제3절 Ca 이온 제거를 위한 유리재료 개발 86

1. 열처리 온도에 따른 유리의 결정화와 용액 중 Ca 이온의 제거 86

2. 동적반응의 영향 95

3. 표면적의 영향 95

4. 반응을 마친 용액 중 잔류이온의 농도 96

5. 분말반응 실험 100

제4절 SO₄ 이온 제거를 위한 유리재료 개발 102

1. 유리 표면으로 황산염 결정의 석출 102

2. 2가 알칼리토 금속 산화물의 종류에 따른 황산이온 제거 105

3. B₂O₃ 함량이 용액으로부터 황산이온 제거에 미치는 영향 108

4. 정적·동적 반응조건의 영향 110

5. 붕규산염 유리의 황산이온 제거 한계 112

6. 반응 용액의 초기 pH 영향 116

7. 황산이온 제거 기구 119

8. 실제 폐수에 대한 실험 125

제5절 CO₃ 이온 제거를 위한 유리재료 개발 128

1. 유리 표면으로 탄산염 결정의 형성 128

2. 유리조성 중의 SrO 함량이 CO₃ 이온 제거에 미치는 영향 134

3. 유리조성에서 B₂O₃ 함량이 CO₃ 이온 제거에 미치는 영향 137

4. 반응시간에 따른 CO₃ 이온 제거 변화 140

5. 유리를 이용한 CO₂ gas 제거 140

제6절 유리를 이용한 PO₄, NH₄ 동시제거 150

1. 서론 150

2. 실험방법 151

3. 실험 결과 및 토의 153

가. 유리 조성에서 MgO 함량에 따른 PO₄ 이온 제거 153

나. NH₄ 이온 농도 변화에 따른 결정 형성 변화 157

다. 유리조성에서 SiO₂ 함량이 PO₄ 이온 제거에 미치는 영향 161

라. 반응용액의 초기 PO₄ 이온농도 변화에 따른 NH₄ 이온 제거 165

마. 유리조성에서 P₂O5(이미지참조) 함량의 영향 166

바. P₂O5(이미지참조)를 포함한 유리의 NH₄이온 제거 171

사. 초기 pH가 이온제거에 미치는 영향 175

아. 실제폐수의 적용 실험 178

제7절 연구개발 결과 및 활용계획 180

1. 연구개발 결과 요약 180

2. 연도별 연구개발 목표의 달성도 183

가. 1차년도 183

(1) 연구개발목표의 달성도 183

(2) 평가의 착안점에 따른 목표달성도에 대한 자체 평가 183

나. 2차년도 184

(1) 연구개발목표의 달성도 184

(2) 평가의 착안점에 따른 목표달성도에 대한 자체 평가 184

3. 연도별 연구성과 185

가. 논문게재 성과 185

나. 특허 성과 185

다. 공개세미나 성과 185

라. 학술대회 발표 성과 186

4. 관련분야의 기술발전 기여도 187

가. 기술적 측면 187

나. 환경적 측면 187

다. 경제·산업적 측면 188

5. 연구개발 결과의 활용계획 189

6. 향후 연구내용 190

가. 경제성 향상을 위한 폐유리의 재활용에 대한 연구 190

나. 반응 후 폐유리의 회수방안 및 생성 결정의 재활용에 대한 연구 190

다. 실제 현장 적용에 대한 연구 191

제4장 참고문헌 192

제5장 공개세미나 및 외부 전문가 평가 결과 196

1. 공개세미나 개최 결과 196

2. 공개세미나 안내 자료 198

3. 공개세미나 발표자료 202

4. 공개세미나 발표 사진 214

5. 전문가 평가결과 215

Table 1. 하수종말 처리시설 방류수 수질기준 20

Table 2. 수중의 칼슘 이온에 의해 보일러 설비에서 발생되는 장해 22

Table 2-1. Glass Composition for This Study. 45

Table 2-2. Glass Composition for This Study. 58

Table 2-3. Concentration of Phosphate Ion Removed after Reaction with Solution Containing Phosphate Ions in Consecutive Inflow System. 72

Table 2-4. Glass Composition for This Study. 74

Table 2-5. Concentration of Phosphate Ions Remaining in Wastewater after Reaction with 1g of B20 Glass Powder for 5min and 20min. 85

Table 4-1. Glass Compositions for This Study. 106

Table 4-2. Solubility Product Constant for Sulfate Crystal. 107

Table 4-3. Glass Composition for This Study. 109

Table 5-1. Glass Compositions for This Study. 130

Table 5-2. Solubility Product for Constant for Carbonate Crystal. 130

Table 5-3. Glass Composition for This Study. 135

Table 5-4. Glass Composition for This Study. 138

Table 6-1. Glass Composition for This Study. 154

Table 6-2. Glass Composition for This Study. 162

Table 6-3. Glass Composition for This Study. 169

Fig. 1. Solubility curve of calcium salt 22

Fig. 2. Scale formation in industrial pipes 23

Fig. 3. Schematic of removal of hazardous ions from the solution by glass material 34

Fig. 1-1. Three types of reaction methods 40

Fig. 2-1. Concentrations of phosphate ions remaining in the solution after reaction for 1 minute and 5 minutes with 1g of each glass powder with different B₂O₃ content in a range of 10 to 50 mole%. 46

Fig. 2-2. Concentration of phosphate ion remaining in the solution after reaction for 6hr and 48hr with bulk glass with different B₂O₃ content in a range of 10 to 50 mole%. 47

Fig. 2-3. Concentrations of phosphate ions remaining in the solution after reaction for various times with 1 piece of bulk glass with 20 mole% of B₂O₃. 49

Fig. 2-4. Thin film XRD patterns of B20 glass surfaces reacted with phosphate ion-containing solution with pH 3.0 for various times under the dynamic condition. 51

Fig. 2-5. FT-IRRS spectras of B20 glass surfaces reacted with phosphate ion-containing solution with pH 3.0 for various times under the dynamic condition. 52

Fig. 2-6. SEM micrographs of B20 glass surface reacted with phosphate ion-containing solution with pH 3.0 for various times under the dynamic condition. 53

Fig. 2-7. Schematic diagram for the mechanism of phosphate ion removal. 55

Fig. 2-8. Concentrations of phosphate ions remaining in the solution after reaction for various times with 1g of B20 glass powder with different particle size. 56

Fig. 2-9. Concentrations of phosphate remaining in the solution after reaction for 1 minute with 1g of each glass with different CaO content in a range of 10 to 35 mole%. 59

Fig. 2-10. Concentration of phosphate ions removed after reaction of glass powder with various CaO content in the solution with various initial phosphate ions for 1 minute. 61

Fig. 2-11. Concentrations of removed phosphate ions with various initial pH of the solution after reaction with two pieces of 25CaO glass for 40 hours. 62

Fig. 2-12. Concentrations of phosphate ions remaining in the solution after reaction with two pieces of 25CaO glass for various times, under static and dynamic conditions. 64

Fig. 2-13. Thin film XRD patterns of 25CaO glass surfaces reacted with phosphate ion-containing solution with pH 2.0 for various times under (a) the dynamic condition and (b) the static condition. 65

Fig. 2-14. SEM micrographs of 25CaO glass surface reacted with solution containing phosphate ions for various times under (a) the static condition and (b) the dynamic condition. 66

Fig. 2-15. Concentrations of phosphate ions remaining in the solution against the surface area of the samples to solution volume ratio(S/V) are plotted after 10 hours of reaction under the dynamic condition. 68

Fig. 2-16. Concentrations of phosphate ions remaining in the solution after reaction with 1g of 25CaO glass powder for various times. 69

Fig. 2-17. SEM and EDS results of the hydroxyapatite crystal layer and the original bulk glass after breaking off the deposited layer. 70

Fig. 2-18. SEM and EDS results of the silica-rich layer and the original bulk glass after immersion in HCl solution with a pH 1 to remove hydroxyapatite. 70

Fig. 2-19. Concentrations of phosphate ions remained in the solution after reaction times of 2, 5 and 10 minutes with 1g of each glass powder with different B₂O₃ content in a range of 0 to 50 mole%. 75

Fig. 2-20. Concentrations of phosphate ions remained in the solution after reaction with various initial phosphate concentrations of the reacting solution with 1g of each glass powder for 5 minutes. 76

Fig. 2-21. Thin film XRD patterns of the surfaces of glasses with different B₂O₃ content in a range of 0 to 50 mo1e% reacted in a phosphate ion-containing solution with pH 3.0 for 12 hours. 78

Fig. 2-22. FT-IR spectra of the surfaces of glasses with different B₂O₃ content in a range of 0 to 50 mo1e% reacted in a phosphate ion-containing solution with pH 3.0 for 12 hours. 79

Fig. 2-23. SEM micrograph of 40B glass surface reacted with phosphate ion-containing solution with pH 3.0 for 12 hours. 81

Fig. 2-24. Transmission electron diffraction pattern (a) and EDX result (b) of the clusters on the 40B glass after reaction with phosphate ion-containing solution with pH 3.0 for 12 hours. 82

Fig. 2-25. Concentrations of phosphate ions remaining in the solution after reaction with different amounts of 20B and 40B glass powders for 2 and 30 minutes. 83

Fig. 3-1. Powder XRD patterns of glass surface after heat treatment at various temperatures for 1 hour. 87

Fig. 3-2. Concentrations of calcium ions removed in the solution after reaction for 5 minutes with heat treated glass at various temperatures. 89

Fig. 3-3. Powder XRD patterns of glass surface after heat treatment at 550℃ for 1 hour and 6hours. 90

Fig. 3-4. Concentrations of calcium ions removed in the solution after reaction for 5 minutes with heat treated glass at 550℃ for 1hr and 6hr. 91

Fig. 3-5. Thin film XRD patterns of glass surface reacted with a solution containing calcium ion containing solution. 93

Fig. 3-6. SEM images of glass surface reacted with a solution containing calcium ion. 94

Fig. 3-7. Concentration of calcium ions remaining in the solution after reaction with different stirring speed for various times. 97

Fig. 3-8. Concentrations of calcium ions remaining in the solution against the surface area of the samples are plotted after 12 hours and 24 hours. 98

Fig. 3-9. Concentrations of calcium and phosphate ions remaining in the solution against the surface area of the samples are plotted after 24 hours. 99

Fig. 3-10. Concentrations of calcium ions remaining in the solution after reaction with 50ppm Ca solution and tap water for various times. 101

Fig. 4-1. Concentration of sulfate ions remaining in the solution containing 1000ppm of sulfate ion with pH1.O after reaction for various times with Ba20B bulk glass. 103

Fig. 4-2. Thin film XRD patterns and SEM micrographs of Ba20B glass surface after reaction with solution containing 1000ppm of sulfate ions. 104

Fig. 4-3. Concentration of sulfate ions removed from the solution after reaction with bulk glass and glass powder with four different divalent ions for 1hour and 1minute. 107

Fig. 4-4. Sulfate ion concentration remained after reaction with glass containing different B₂O₃ contents for various times. 109

Fig. 4-5. Concentrations of sulfate ions remaining in the solution after reaction with Ba20B bulk glass and glass powder for various times, under static and dynamic conditions. 111

Fig. 4-6. Concentration of sulfate ions removed from the solution containing 1000ppm of sulfate ions after reaction with different amount of Ba20B glass powder for 1minute. 113

Fig. 4-7. Concentration of sulfate ions removed from the solution containing 10000ppm of sulfate after reaction with 1g of Ba20B glass powder for various times. 114

Fig. 4-8. FT-IR spectra of Ba20B glass surfaces reacted in a solution containing 10000ppm of sulfate ions with pH 1.0 for very short reaction times. 115

Fig. 4-9. Concentration of sulfate ions removed after reaction with 1g of Ba20B glass powder in a solution with various initial pH for 1 minute. 117

Fig. 4-10. FT-IR spectra of Ba20B glass surfaces reacted in a solution containing 10000ppm of sulfate ions with various pH for 30 seconds. 118

Fig. 4-11. Morphology of cross section of BaSO₄ crystal on the Ba20B glass after reaction in a solution containing 10000ppm of sulfate ions with pH 1.0 for 40 minutes. 120

Fig. 4-12. EDS result of non-reacted glass surface (a) and reacted glass surface (b) 121

Fig. 4-13. EDS line profile of Si, Na, Ba and S of cross-section of Ba20B glass reacted in a solution containing 10000ppm of sulfate ion with pH 1.0 for 40 minutes. 122

Fig. 4-14. Thickness of barium sulfate crystal layer on the Ba20B glass after reaction in a solution containing 10000ppm of sulfate ions with pH 1.0 for various reaction times. 123

Fig. 4-15. SEM micrograph of BaSO₄ crystal on the Ba20B glass surfaces reacted in a solution containing 10000ppm of sulfate ions with pH 1.0 for 40 minutes. 124

Fig. 4-16. Schematic diagram for the mechanism of sulfate ion removal. 126

Fig. 4-17. Concentration of sulfate ions removed from wastewater after reaction with 1g of Bs20B glass powder for 10min. 127

Fig. 5-1. Carbonate ion concentration removed from the solution after reaction with different divalent ion containing glass for 1 hour. 131

Fig. 5-2. Thin film XRD patterns Sr0B glass surface after reaction with solution containing 1000ppm of carbonate ions. 132

Fig. 5-3. FT-IR spectra of Sr0B glass surfaces reacted in a solution containing 1000ppm of carbonate ions. 133

Fig. 5-4. Carbonate ion concentration removed from the solution after reaction with four glasses which containing different SrO contents in the range of 5-35 mole% for 1 hour. 136

Fig. 5-5. Carbonate ion removal efficiency of the glasses which containing different B₂O₃(B2O3) contents when the glasses were reacted with a solution containing 1000ppm of carbonate ions for 1hour. 139

Fig. 5-6. Concentration of carbonate ion remained after reaction with 40B-40Sr glass powder for various times. 141

Fig. 5-7. Thin film XRD pattern of Sr20B glass surface after reaction with saturated CO₂ gas solution for 1 hour. 143

Fig. 5-8. Thin film XRD patterns of Sr20B glass after reaction with continuous injected CO₂ solution for various times. 145

Fig. 5-9. Thin film XRD pattern of Sr20B glass after reaction with continuous injected CO₂ solution for 20 hours. 146

Fig. 5-10. Thin film XRD pattern of Sr20B glass after reaction with continuous injected CO₂-KOH solution for 2 hours. 147

Fig. 5-11. Thin film XRD pattern of Sr20B glass after reaction with saturated CO₂ gas solution and 0.5% AMP solution for 1 hour. 149

Fig. 6-1. Concentrations of phosphate ions remaining in the solution after reaction for 3hours and 12 hours with bulk glass with different contents of SiO₂ in a range of 20 to 30mole%. 155

Fig. 6-2. Concentrations of phosphate ions remaining in the solution after reaction of bulk glass with reaction solution containing 900ppm and 1500ppm of phosphate ions. 156

Fig. 6-3. Concentrations of removed phosphate ions with various initial ammonium ions of solution after reaction with 22.5Mg bulk glass for 12hours. 158

Fig. 6-4. Thin film XRD patterns of 22.5Mg glass surfaces reacted with reaction solution containing phosphate ions and various initial ammonium ions for 12hours. 159

Fig. 6-5. SEM images of 22.5Mg glass surfaces reacted with reaction solution (a)containing only phosphate ions and (b)containing phosphate and ammonium ions under static condition for 12hour. 160

Fig. 6-6. Concentrations of phosphate and ammonium ions remaining in the solution after reaction of bulk glass with different contents of SiO₂ in a range of 5 to 30mole% for 12hours. 163

Fig. 6-7. SEM and EDS results of the (a)Struvite crystal and (b)silica-rich layer. 164

Fig. 6-8. Concentrations of phosphate and ammonium ions remaining in the solution after reaction with 1g of 15Si glass powder with various initial concentrations of phosphate ions in a range of 100ppm to 1500ppm for 30minutes. 168

Fig. 6-9. Concentrations of phosphate and ammonium ions remaining in the solution after reaction of bulk glass with different contents of P₂O5(이미지참조) in a range of 0 to 7mole% for 12hours. 170

Fig. 6-10. SEM images of glass surface with various contents of P₂O5(이미지참조) reacted with reaction solution containing only ammonium ions. 172

Fig. 6-11. Thin film XRD patterns of glass with various contents of P₂O5(이미지참조) reacted with reaction solution containing only ammonium ions. 173

Fig. 6-12. Concentrations of remained phosphate and removed ammonium ions with various initial ammonium ions of solution after reaction with 1g of 7P glass powder for 30minutes. 174

Fig. 6-13. Concentration of phosphate and ammonium ions remaining in a solution with 1g of 0P glass powder with various initial pH. 176

Fig. 6-14. Concentration of phosphate and ammonium ions remaining in a solution with 1g of 7P glass powder with various initial pH. 177

Fig. 6-15. Concentration of phosphate and ammonium ions remaining in a solution with 1g of 7P glass powder with various reaction time. 179

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
T000030789 전자형태로만 열람가능함 이용불가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기