권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
제출문
보고서 초록
목차
제1장. 서론 14
제1절. 연구개발의 중요성 및 필요성 16
제2절. 연구개발의 국내·외 현황 18
1. 국내 연구 현황 18
2. 국외 연구 현황 18
제3절. 연구개발대상 기술의 차별성 25
제2장. 연구개발의 목표 및 내용 28
제1절. 연구의 최종 목표 30
제2절. 연도별 연구개발의 목표 및 평가방법 31
제3절. 연도별 추진체계 32
제3장. 연구개발 결과 및 활용계획 34
제1절. 연구개발 결과 및 토의 36
1. 1차년도 연구개발 수행 내용 36
(1) 바이오 수소 가스 생산 증대를 위한 기초 연구 36
A. 운전온도와 Inhibitor 주입에 의한 혐기성 메탄 생성 미생물의 활성 억제 36
B. 수소 분압 조절에 의한 혐기성 메탄 생성 미생물의 활성 억제 및 수소 생산 미생물의 활성 증대 46
(2) 막분리-조합형 수소 배출 시스템이 결합된 연속 운전식 바이오 수소 생산 반응조 구축 53
A. 반응조 내 수소 배출을 위한 gas purging 용 분리막 선정 53
B. 수소 생성 미생물의 고농도 유지를 위한 외부 분리막 설치 및 운전 54
C. 막분리-조합형 수소 배출 시스템이 결합된 바이오 수소 생산 반응조 설치 및 운전 58
2. 2차년도 연구개발 수행 내용 62
(1) 바이오 수소 가스 생산 증대를 위한 핵심 연구 62
A. 열처리에 의한 혐기성 메탄 생성 미생물의 활성 억제 및 수소 생성 미생물의 활성 증대 62
B. pH조절을 통한 혐기성 메탄 생성 미생물의 활성 억제 및 수소 생성 미생물의 활성 증대 67
(2) 막분리-조합형 연속 운전식 바이오 수소 생산 반응조 운전 결과 86
A. 효율적인 반응조 내 수소 분압 조절 시스템 구성 86
B. 다양한 운전 조건에서의 막분리-조합형 바이오 수소 생산 반응조의 연속 운전 결과 87
C. 분자생물학적 분석기법 이용 연속 운전식 반응조 내 미생물 군집 분석 100
D. 효율적인 고순도 수소 분리 시스템 구성 및 운전 110
E. 바이오 수소가스 생산 공정의 경제성 분석 113
제2절. 연구개발 결과 요약 114
제3절. 연도별 연구개발목표의 달성도 116
1. 1차년도 연구개발목표의 달성도 116
2. 2차년도 연구개발목표의 달성도 116
제4절. 연도별 연구성과 117
1. 1차년도 연구성과 117
2. 2차년도 연구성과 117
제5절. 관련분야의 기술발전 기여도 119
1. 기술적·환경적 측면 119
2. 경제적·산업적 측면 119
제6절. 연구개발 결과의 활용계획 121
제4장 참고문헌 122
Figure 1-1. Fermentative hydrogen gas production from renewable resources 21
Figure 1-2. Metabolic pathway of fermentative hydrogen gas production (조지혜, 2006) 22
Figure 3-1. Cumulative total gas production in the methanogenic cultures amended with different initial BESA at 20℃ (A) and 35℃ (B). 39
Figure 3-2. Cumulative methane gas production in the methanogenic cultures amended with different initial BESA at 20℃ (A) and 35℃ (B). 40
Figure 3-3. VFAs profile in the methanogenic cultures amended with different initial BESA at 20℃ (A) and 35℃ (B). 43
Figure 3-4. VFAs concentration profile in the methanogenic cultures amended with 10 (A and C) and 25 g/L BESA (B and D) at 20℃ (A and B) and 35℃ (C and D). 44
Figure 3-5. Fermentative bio-hydrogen gas production from organic wastes 45
Figure 3-6. Fermentative bio-gas production under various hydrogen partial pressure 47
Figure 3-7. Cumulative total gas production under various gas purging conditions in batch cultures amended without (A) and with BESA (B) at 35℃. 49
Figure 3-8. Cumulative methane gas production under various gas purging conditions in batch cultures amended without (A) and with BESA (B) at 35℃. 50
Figure 3-9. Cumulative hydrogen gas production under various gas purging conditions in batch cultures amended without (A) and with BESA (B) at 35℃. 52
Figure 3-10. Hollow fiber membrane for gas purging 53
Figure 3-11. 10-L glass reactor equipped with gas purging membrane 54
Figure 3-12. Crossflow external membrane module (A) and fouled PVDF membrane (B) 55
Figure 3-13. Permeate flux as a function of the TMP for MF (A) and UF membrane (B) 56
Figure 3-14. Developed flat-sheet type membrane module 57
Figure 3-15. Flow pattern of developed membrane module by using CFD modeling technique 57
Figure 3-16. Bio-hydrogen gas production process with membrane-enhanced hydrogen discharge system 58
Figure 3-17. Organic removal profiles in a continuous-flow bioreactor 59
Figure 3-18. Processed COD profiles in a continuous-flow bioreactor 60
Figure 3-19. Cumulative hydrogen, methane, and VFAs profiles in batch cultures amended with heat-treated digester sludge 64
Figure 3-20. VFAs profiles in batch cultures amended with heat-treated digester sludge 66
Figure 3-21. Profiles of processed COD in batch cultures amended with heat-treated digester sludge 66
Figure 3-22. Cumulative hydrogen, methane, and VFAs profiles in batch cultures at initial pH 5 without an amendment of BESA 69
Figure 3-23. VFAs profiles in batch cultures at initial pH 5 without an amendment of BESA 69
Figure 3-24. Profiles of processed COD in batch cultures at initial pH 5 without an amendment of BESA 70
Figure 3-25. Cumulative hydrogen, methane, and VFAs profiles in batch cultures at initial pH 9 without an amendment of BESA 71
Figure 3-26. VFAs profiles in batch cultures at initial pH 9 without an amendment of BESA 72
Figure 3-27. Profiles of processed COD in batch cultures at initial pH 9 without an amendment of BESA 72
Figure 3-28. Cumulative hydrogen, methane, and VFAs profiles in 10 g/L BESA-amended batch cultures without pH adjustment 74
Figure 3-29. VFAs profiles in 10 g/L BESA-amended batch cultures without pH adjustment 75
Figure 3-30. Profiles of processed COD in 10 g/L BESA-amended batch cultures without pH adjustment 75
Figure 3-31. Cumulative hydrogen, methane, and VFAs profiles in batch cultures at initial pH 9 with 10 g/L BESA 77
Figure 3-32. VFAs profiles in batch cultures at initial pH 9 with 10 g/L BESA 78
Figure 3-33. Profiles of processed COD in batch cultures at initial pH 9 with 10 g/L BESA 78
Figure 3-34. Cumulative hydrogen, methane, and VFAs profiles in batch cultures at initial pH 5 with 10 g/L BESA 80
Figure 3-35. VFAs profiles in batch cultures at initial pH 5 with 10 g/L BESA 81
Figure 3-36. Profiles of processed COD in batch cultures at initial pH 5 with 10 g/L BESA 81
Figure 3-37. Observed butyric acid/acetic acid ratio under various operational conditions 82
Figure 3-38. Membrane-typed air diffuser used in this study 86
Figure 3-39. Cumulative hydrogen, methane, and VFAs profiles in semi-continuous flow membrane-coupled bioreactor fed with untreated digested sludge 89
Figure 3-40. Profiles of processed COD in semi-continuous flow membrane-coupled bioreactor fed with untreated digested sludge 89
Figure 3-41. Cumulative hydrogen, methane, and VFAs profiles in semi-continuous flow membrane-coupled bioreactor fed with heat-treated digested sludge 91
Figure 3-42. Profiles of processed COD in semi-continuous flow membrane-coupled bioreactor fed with heat-treated digested sludge 91
Figure 3-43. Cumulative hydrogen, methane, and VFAs profiles in semi-continuous flow membrane-coupled bioreactor fed with autoclaved digested sludge 93
Figure 3-44. Profiles of processed COD in semi-continuous flow membrane-coupled bioreactor fed with autoclaved digested sludge 93
Figure 3-45. Cumulative hydrogen, methane, and VFAs profiles in semi-continuous flow membrane-coupled bioreactor fed with autoclaved digested sludge at pH 5 95
Figure 3-46. Profiles of processed COD in semi-continuous flow membrane-coupled bioreactor fed with autoclaved digested sludge at pH 5 95
Figure 3-47. Hydrogen production rate in semi-continuous flow membrane-coupled bioreactor fed with autoclaved digested sludge at pH 5 96
Figure 3-48. Schematic diagram of PCR program 102
Figure 3-49. 16S rDNA of the isolated microorganisms 102
Figure 3-50. pGEMR-T Vector circle map and sequence reference points.(이미지참조) 103
Figure 3-51. RFLP analysis of 16S rDNA 105
Figure 3-52. T-RFLP analysis results 105
Figure 3-53. Confocal laser scanning microscopy (CLSM) micrograph of FISH of sludge sample (a) DAPI staining (Blue), (B) is showing beta proteobacteria hybridized by probe ALF 968 (Cy3-labelled, Green) (C) overlay, (D) phase-contrast image 108
Figure 3-54. FISH micrograph of culture sample obtained at the beginning (left) and the end (right) of incubation time with fluorescently labeled; α-, γ-proteobacteria hybridized by probe ALF968 (Cy5-labelled, Purple) and GAM42a (Cy3-labelled, Green) 109
Figure 3-55. Gas separation membrane (left) and carbon dioxide absorber (right) used for the hydrogen gas separation in this study 110
Figure 3-56. Extent of separated hydrogen purity using various carbon dioxide gas removal processes with gas separation membrane 111
등록번호 | 청구기호 | 권별정보 | 자료실 | 이용여부 |
---|---|---|---|---|
T000031060 | 전자형태로만 열람가능함 | 전자자료 | 이용불가 |
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.