본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
한반도 주변해역 석유가스자원 탐사 연구 / 지식경제부 [편] 인기도
발행사항
[과천] : 지식경제부, 2009
자료실
전자자료
형태사항
167 p. : 삽화, 도표, 사진 ; 30 cm
제어번호
MONO1201010531
주기사항
주관연구기관: 한국지질자원연구원
주관연구책임자: 이호영
원문

목차보기더보기

표제지

제출문

보고서 요약서

요약문

SUMMARY

CONTENTS

목차

제1장 연구개발과제의 개요 24

제1절 연구 배경 및 목적 24

제2절 연구 범위 25

제2장 국내외 기술개발 현황 26

제1절 서언 26

제2절 해저 탄성파탐사 기술 현황 27

1. 국내외 자료취득 기술 27

2. 국내외 전산처리 기술 28

3. 국내외 자료해석 기술 31

제3장 연구개발수행 내용 및 결과 34

제1절 탄성파탐사 자료취득 34

1. 탄성파탐사 측선설계 34

2. 자료취득 변수 35

3. 항측 및 항적도 36

4. 음원제조 41

5. 자료기록 43

6. 품질관리 45

제2절 탄성파탐사 자료처리 56

1. 자료처리 개요 56

2. 전산처리 시스템 57

3. 기본전산처리 58

4. 고해상 탐사 자료처리 82

5. AVO 자료처리 및 분석 84

6. OBS 자료처리 및 분석 100

제3절 탄성파 자료해석 및 평가 108

1. 황해 군산퇴적분지 108

2. 남해 제주퇴적분지 124

3. 동해 울릉퇴적분지 134

제4절 도면집 작성 156

제4장 연구개발목표 달성도 및 대외기여도 158

제5장 연구개발 결과의 활용계획 160

제6장 연구개발과정에서 수집한 해외과학기술정보 162

제7장 참고문헌 164

Table 3-1-1. Seismic acquisition work order of 09AQ project. 35

Table 3-1-2. Geodetic parameters for 2009 AQ survey. 37

Table 3-1-3. Specifications of navigation systems. 39

Table 3-1-4. Line shoot log of 09 AQ. 44

Table 3-1-5. Results of dropout test for the 2D seismic source. 52

Table 3-1-6. RMS values for 2D seismic survey. 53

Table 3-2-1. Inversion statistics. 103

Table 3-2-2. Inversion statistics. 106

Table 3-3-1. Tectonic deformation of the East China Sea Shelf Basin and regional dynamics. 127

Fig. 2-2-1. Common receiver gathers of OBS#3 in the 07FL-003 line(upper: vertical component, lower: hydrophone data) and their resolution(upper & lower right). 30

Fig. 2-2-2. Inline section of OBS #3 after 90 degree trace rotation. 31

Fig. 2-2-3. Common shot gather of OBS #4 of 201 wide refraction survey line. 31

Fig. 2-2-4. P wave velocity profile of site-4(OBS#4) using Tau-sum inversion. 31

Fig. 2-2-5. Reflection attributes used in seismic facies analysis. 33

Fig. 2-2-6. Data interpretation using Geographix software. 33

Fig. 3-1-1. Survey area map and designed seismic lines for 2009 project. 34

Fig. 3-1-2. System configuration of integrated navigation system(TRINAV) of Tamhae2 and flowchart for acquisition and processing of navigation data. 36

Fig. 3-1-3. Vessel equipment deployment diagram for 09AQ 2-D seismic survey. 38

Fig. 3-1-4. Survey area map and final track lines(refer to Fig. 3-1-1). 42

Fig. 3-1-5. Specification of airgun sub-array. 43

Fig. 3-1-6. Basic QC processing jobs. 46

Fig. 3-1-7. Source configuration and signature for 2D seismic survey. (a) source configuration. (b) source signature. 50

Fig. 3-1-8. TIDI RMS profile for all sequence lines. 54

Fig. 3-2-1. Basic data processing work flow of 08AQ and 09AQ 2D seismic survey. 57

Fig. 3-2-2. Quality control in geometry process, (a) CDP fold number, (b) CDP X-Y position plot with statistic histogram, and (c) receiver offset with trace number. 60

Fig. 3-2-3. Parameter test to define optimal gain value. Left upper trace is set to 8 dB/sec, right upper shows 4 dB/sec, left lower corresponds 2 dB/sec, and right lower trace is raw shot record for source number of 10. 61

Fig. 3-2-4. Trace edit and statistics result. Left window shows trace statistics data for all trace order with several attributes and right window shows selection of kill channels. 62

Fig. 3-2-5. Velocity analysis process of preprocessed seismic data. Left panel indicates velocity semblance computation, middle left panel shows CMP gather at the velocity picking point, middle right is neighboring 9 points to the velocity picking point and right... 63

Fig. 3-2-6. Volume Viewer of 08AQ survey showing geologic trend with color velocity map. Green color indicates low stacking velocity and light red color matches high stacking velocity. 64

Fig. 3-2-7. F-K filtering result, (a) first shot gather and its FK transformed result, (b) filtered output. 65

Fig. 3-2-8. WEMR application result, (a) NMO gather of source 61, (b) predictive deconvolution filtered data of (a), and (c) WEMR applied data of (a). 65

Fig. 3-2-9. Stack section of 08AQ-101. 67

Fig. 3-2-10. Stack section of 08AQ-102. 68

Fig. 3-2-11. Stack section of 08AQ-104. 69

Fig. 3-2-12. Stack section of 08AQ-105 and 08AQ-105A. 70

Fig. 3-2-13. Stack section of 08AQ-106 and 08AQ-106A. 71

Fig. 3-2-14. Stack section of 08AQ-109. 72

Fig. 3-2-15. Stack section of 08AQ-113 and 08 AQ-117. 73

Fig. 3-2-16. Stack section of 09AQ-105 and 09AQ-113. 74

Fig. 3-2-17. Stack section of 09AQ-106. 75

Fig. 3-2-18. Stack section of 09AQ-107. 76

Fig. 3-2-19. Stack section of 09AQ-109. 77

Fig. 3-2-20. Stack section of 09AQ-111. 78

Fig. 3-2-21. Stack section of 09AA-112. 79

Fig. 3-2-22. Stack section of 09AQ-114. 80

Fig. 3-2-23. Stack section of 09AQ-116. 81

Fig. 3-2-24. Flow chart of high-resolution seismic data processing for 09AQ survey. 82

Fig. 3-2-25. Example high-resolution seismic section 09AQ-112. 83

Fig. 3-2-26. Seismic trace(top) and amplitude variation with offset(bottom). 85

Fig. 3-2-27. A distribution of AVO anomaly for the Class 3(Castagna et al., 1998). 86

Fig. 3-2-28. Classification of gas-bearing sand layer according to the intercept and gradient in quadrant. (Rutherford and Williams, 1989; Castagna et al., 1993). 87

Fig. 3-2-29. Schematic amplitude variation for 4 types of gas-bearing sandstone. Amplitude gradient with offset distance is represented by dotted red line. 87

Fig. 3-2-30. (a) stack section of 09AQ-107 line and (b) zoomed section for bright-spot reflection event. 88

Fig. 3-2-31. Seismic complex analysis results. (a) Reflection strength, (b) Instantaneous frequency and (c) Instantaneous phase. 90

Fig. 3-2-32. Flowchart of data processing for AVO analysis. 92

Fig. 3-2-33. Seismic traces that show so weak amplitude in 42th receiver. 93

Fig. 3-2-34. Interval velocity which is superimposed on the stack section. 93

Fig. 3-2-35. Common midpoint gathers (a) before and (b) after true amplitude recovery. 95

Fig. 3-2-36. (a) AVO angle gathers of 40 degree and the calculated AVO attributes of (b) Intercept and (c) Gradient. 96

Fig. 3-2-37. AVO Crossplot window for 09AQ-107 line. 97

Fig. 3-2-38. Track chart of 09AQ-107 and crossing line of 05GH-022. 98

Fig. 3-2-39. Stack section of 05GH-022 line. 99

Fig. 3-2-40. AVO crossplot window of 05GH-022 line. 99

Fig. 3-2-41. Track lines of OBS refraction survey which acquired in 2007(A-A') and 2005(B-B'). Red stars indicate locations of OBSs. 100

Fig. 3-2-42. Schematic of seismic modeling and traveltime inversion. 101

Fig. 3-2-43. (a) 2D seismic stack section(04SE-105, 105A) which is a part of refraction survey line and (b)initial depth and velocity model for modeling and traveltime inversion. Red dotted box indicate the corresponding area of 2D seismic section. 102

Fig. 3-2-44. Ray diagram and traveltime curves on initial model(a) and final model(b), Solid black lines in the time domain are calculated traveltime and colored thick lines are observed traveltime. 103

Fig. 3-2-45. Final velocity and structural model derived from modeling and traveltime inversion. 104

Fig. 3-2-46. Synthetic seismogram from final model is superimposed on the real OBS data(velocity is reduced by 7 km/s). 104

Fig. 3-2-47. (a) 2D seismic stack section(05SE-109) which is a part of refraction survey line and (b)initial depth and velocity model for modeling and traveltime inversion. Red dotted box indicate the corresponding area of 2D seismic section. 105

Fig. 3-2-48. Ray diagram and traveltime curves on initial model(a) and final model(b). Solid black lines in the time domain are calculated traveltime and colored which lines are observed traveltime. 106

Fig. 3-2-49. Final velocity and structural model derived from modeling and traveltime inversion. 107

Fig. 3-2-50. Synthetic seismogram from final model is superimposed on the real OBS data(velocity is reduced by 7 km/s). 107

Fig. 3-3-1. Seismic Profiles of Gunsan Basin. 109

Fig. 3-3-2. Geological structure map of the Gunsan Basin. 4 massifs(northern, northeast, central and southern massifs) and 3 sags(northeast, central and southwest sags) are developed. Central and southwest sags are consisted of 3 and 2 subunits, respectively.... 110

Fig. 3-3-3. MSB I time structure map & prospect area of the Gunsan Basin. 110

Fig. 3-3-4. MSQ I isochron map (MSB I - MSB II). 112

Fig. 3-3-5. MSB II time structure map. 116

Fig. 3-3-6. MSQ II isochron map (MSB II - MSB III). 117

Fig. 3-3-7. MSB III time structure map. 118

Fig. 3-3-8. Track Chart of the Jeju Basin 2007. 124

Fig. 3-3-9. Geological Structural Divisions of the East China Sea(modified from Zhou et. al., 1989). 126

Fig. 3-3-10. Seismic Profiles of Jeju Basin. 128

Fig. 3-3-11. MSB I(acoustic basement) time structure map of the Jeju Basin. 129

Fig. 3-3-12. MSB II time structure map of the Jeju Basin. 129

Fig. 3-3-13. MSB III time structure map of the Jeju Basin. 130

Fig. 3-3-14. MSQ I isochron map of the Jeju Basin. 131

Fig. 3-3-15. MSQ II isochron map of the Jeju Basin. 132

Fig. 3-3-16. Physiography of the East Sea. 135

Flg. 3-3-17. Location map of the seismic lines for the data interpretation and mapping of Ulleung Basin. 136

Fig. 3-3-18. Key horizon Correlation to the previous studies with this study. 138

Fig. 3-3-19. Stratigraphy of Dolgorae-1 Well based on the foram analysis (Lee, 1994). 138

Fig. 3-3-20. Acoustic basement time structure map. 139

Fig. 3-3-21. Interpreted seismic profile of Line 88-228A. 140

Fig. 3-3-22. Time structure map of MSB I. 141

Fig. 3-3-23. Interpreted seismic profile of Line 04SE-108. 142

Fig. 3-3-24. Interpreted seismic profile of Line 05SE-109. 143

Fig. 3-3-25. Time Structure Map of MSB II. 144

Fig. 3-3-26. Prograding depositional structure developed in the MSEQ II mega-sequence (Middle Miocene) appeared in the southernmost of the Ulleung Basin. 145

Flg. 3-3-27. Interpreted seismic profile of Line 92-6011. 145

Fig. 3-3-28. Interpreted seismic profile of Line 92-6053. 146

Fig. 3-3-29. Interpreted seismic profile of Line 83-36. 146

Fig. 3-3-30. Interpreted seismic profile of Line 89-621+83-27. 147

Fig. 3-3-31. Interpreted seismic profile of Line 07HC-001. 147

Fig. 3-3-32. Seismic Line 89-617. 148

Fig. 3-3-33. Seismic Line 92-6031. 148

Fig. 3-3-34. Interpreted seismic profile, Line 92-6011. 148

Fig. 3-3-35. Interpreted Seismic Profile of Line 83-23. 149

Fig. 3-3-36. Interpreted seismic profile of Line 92-6083. 149

Fig. 3-3-37. Time Structure Map of MSB III. 150

Fig. 3-3-38. Seismic profile of Line 88-east-03. 151

Fig. 3-3-39. Interpreted seismic profile of Line 05SE-113. 151

Fig. 3-3-40. Time structure map of MSB IV. 152

Fig. 3-3-41. Interpreted seismic profile of Line 09AQ-109. 153

Fig. 3-4-1. Example of track chart. 157

Fig. 3-4-2. Example of basement structure map. 157

Fig. 3-4-3. Example seismic section. 157

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
T000032298 전자자료 이용불가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기