본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
해저 천부가스 부존 및 특성규명 기술 연구 / 지식경제부 [편] 인기도
발행사항
[과천] : 지식경제부, 2009
자료실
전자자료
형태사항
228 p. : 삽화, 도표, 사진, 지도 ; 30 cm
제어번호
MONO1201010532
주기사항
주관연구기관: 한국지질자원연구원
주관연구책임자: 김진호
원문

목차보기더보기

표제지

제출문

보고서 요약서

요약문

SUMMARY

CONTENTS

목차

제1장 연구개발과제의 개요 18

제1절 연구의 목적 18

제2절 연구의 필요성 19

제3절 연구의 목표 19

제4절 연구의 내용 및 범위 20

제2장 국내외 기술개발 현황 22

제1절 국외 현황 22

제2절 국내 현황 30

제3장 연구개발 수행 내용 및 결과 36

제1절 서론 36

제2절 현장 자료 취득 및 전산처리 37

1. 다중채널 탄성파 탐사자료 37

2. OBS 탐사자료 65

3. 천부탄성파 탐사자료 72

4. 해저지질 취득자료 78

5. 수중메탄 탐지자료 80

제3절 현장 분석 및 자료해석 90

1. 탄성파 신호 분석 90

2. 천부탄성파 음향특성 분석 105

3. 지화학 분석 119

4. OBS 자료분석 136

5. 탄성파 자료해석 144

제4절 토의 및 결론 152

제4장 목표달성도 및 관련분야에의 기여도 155

제5장 연구개발결과의 활용계획 156

제6장 연구개발과정에서 수집한 해외과학기술정보 157

제7장 참고문헌 165

부록 176

부록 1. 해저 천부가스 분포도 176

부록 2. 보고서 180

동해 연안 해역 해저 천부가스 탐지를 위한 천부 탄성파 특성 연구 182

제출문 184

목차 186

1. 과업 개요 190

1.1. 과업명 190

1.2. 과업 목적 190

1.3. 과업 지역 190

1.4. 과업 기간 190

1.5. 과업 내용 190

1.6. 과업 수량 191

1.7. 탐사 장비 191

1.8. 결과물 191

2. 탐사 개요 192

2.1. 탐사 해역 192

2.2. 탐사 측선 194

3. 탐사 장비 198

3.1. 고분해능 탄성과 시스템 (FM Full-Spectrum Seismic System) 198

3.2. 스파커 탄성파 시스템 (Sparker Seismic System) 198

3.3. 해저면 측사 시스템 (Side-Scan Sonar System) 199

3.4. DGPS (Differential Global Positioning System) 200

4. 탐사 방법 201

4.1. 고분해능 탄성파 탐사 201

4.2. 스파커 탄성파 탐사 201

4.3. 해저면 측사 탐사 202

5. 자료 처리 203

5.1. 반사법 탄성파 탐사 203

5.2. 해저면 측사 탐사 204

6. 결과 및 분석 207

6.1. 탄성파 기록 207

6.2. 가스 함유 퇴적층 반사 유형 207

6.3. 해저면 측사 탐사 209

해저 천부가스 부존 및 특성규명 기술 연구 17

Table 2-1. Number of OBSs by country and institution (김병엽 외, 2008). 28

Table 3-1. Work order for 09SG high-resolution seismic survey. 39

Table 3-2. Geodetic datum, spheroid and projection parameter for 09 SG survey. 49

Table 3-3. Nomenclature of 2D seismic survey. 49

Table 3-4. Specification of GPSs used in navigation system. 51

Table 3-5. RMS values for 2D seismic survey. 62

Table 3-6. Specification of KIGAM OBS. 66

Table 3-7. Parameters for OBS survey. 68

Table 3-8. Parameters for data acquisition by EK60 survey. 77

Table 3-9. Location of piston cores. 78

Table 3-10. Location of sites for observation of gas seepage in 2009. 81

Table 3-11. Acoustic characteristics and locations on the Chirp profile in the study area. 108

Table 3-12. Inversion statistics. 141

Table 6-1. The shallow gas distribution from the sediment cores. 159

동해 연안 해역 해저 천부가스 탐지를 위한 천부 탄성파 특성 연구 187

표 2.1. 구역별 위치 좌표 193

표 2.2. 구역별 수행 탐사 193

표 2.3. 구역별 탐사 수량 194

표 2.4. 측선별 발파 번호, 진행 방향, 측선 길이 및 저장 파일명 195

표 6.1. 가스 함유층에서의 고분해능 탄성파 반사 유형 (Echo Type) 분류 224

해저 천부가스 부존 및 특성규명 기술 연구 13

Figure 1-1. Schematic diagram of Road map for the research plan. 21

Figure 2-1. Relationship between gas content and sound velocity(Wilkens and Richardson, 1998). 25

Figure 2-2. Pressure corer for sampling. 26

Figure 2-3. Columnar section and CT image of sediment bearing gas recovered by pressure core. 27

Figure 2-4. Result of acoustic monitoring(Tuffin, 2001). 27

Figure 2-5. (a) Number of papers related to the ocean bottom seismic survey since 1970s. (b) classification by research objects. 29

Figure 2-6. Acoustic Lance designed by University Hawaii. 33

Figure 2-7. The velocity profile of the lab and in situ sediments recovered in the southeastern area of the Korea (Gorgas et al., 2003). 33

Figure 3-1. Layout of 09SG high-resolution seismic survey. 40

Figure 3-2. Configuration of the seismic data acquisition system and KDAPS-3D system. 40

Figure 3-3. Track chart map of 09SG high-resolution seismic survey. 41

Figure 3-4. Processing flow chart for 09SG high-resolution seismic data. 42

Figure 3-5. Seismic sections of (a) 09SG-103A line and (b) 09SG-114 line. 44

Figure 3-6. Survey area map and preplot lines of 09 Shallow Gas project. 45

Figure 3-7. Acquisition parameter of 2D reflection seismic survey for shallow gas research in 2009. 46

Figure 3-8. Configuration and data flow of Trinav navigation system. 47

Figure 3-9. Diagram of equipment setting for 09SG 2D reflection seismic survey securing offset 50 m between center-of-source(COS) and center-of-first-group (CFG). 50

Figure 3-10. Track chart of 09SG 2D seismic survey. 54

Figure 3-11. Production line summary of 09SG 2D seismic survey. 55

Figure 3-12. Source configuration and signature of single air-gun array for 2D survey. 60

Figure 3-13. Source configuration and signature of single air-gun array for OBS survey. 61

Figure 3-14. TIDI RMS profile for all sequence lines. 63

Figure 3-15. POBS-280 OBS. 65

Figure 3-16. Survey area and lines of OBS wide-angle survey. Stars and blue circles are locations of OBSs. 67

Figure 3-17. (a) OBS common receiver gather of reflection survey and (b) refraction survey, the time axis of (b) is reduced by velocity of 6 km/s. 68

Figure 3-18. Data demultiplexing with OBS shot table. 70

Figure 3-19. Deconvolution test for OBS reflection data. 72

Figure 3-20. The tracklines of Shallow seismic survey. Bule line represents Chirp and EK60 survey lines. Red circle denotes acoustic blanking, pockmark, and... 73

Figure 3-21. Tracklines for the detail survey in the northern and sourthern side of the survey area. 74

Figure 3-22. Schematic diagram of 38kHz EK60. (1) Monitor, (2) PC for data processing, (3) Keyboard, (4) Mouse, (5) General Purpose Transceiver(GPT), (6) ES38-12 transducer. 76

Figure 3-23. Location of piston cores. 79

Figure 3-24. 12 kHz echo sound data in site 09SG-1S. 82

Figure 3-25. Sled for observation of gas seepage. 83

Figure 3-26. Vertical variations of temperature, methane anomaly, and salinity in seawater from site 09SG-1S. 84

Figure 3-27. Vertical variations of temperature, methane anomaly, and salinity in seawater from site 09SG-1S-1. 86

Figure 3-28. Vertical variations of temperature, methane anomaly, and salinity in seawater from site 09SG-2S. 87

Figure 3-29. Vertical variations of temperature, methane anomaly, and salinity in seawater from site 09SG-3S. 88

Figure 3-30. Vertical variations of temperature, methane anomaly, and salinity in seawater from site 09SG-4S. 89

Figure 3-31. The results of Trace statistics. (a) average energy in signal window and (b) dominant frequency based on average spacing of zero crossings within signal window. 93

Figure 3-32. Example of seismic gather of 09 SG. 94

Figure 3-33. Spectrum analysis window of a shot gather. 94

Figure 3-34. Stack section of 09SG-102A line. 101

Figure 3-35. Hilbert transformed section of 09SG-102A line. 101

Figure 3-36. Reflection strength attribute of 09SG-102A line. 102

Figure 3-37. Instantaneous frequency attribute of 09SG-102A line. 102

Figure 3-38. Instantaneous phase attribute of 09SG-102A line. 103

Figure 3-39. Envelope frequency attribute of 09SG-102A line. 103

Figure 3-40. Envelope phase attribute of 09SG-102A line. 104

Figure 3-41. Apparent polarity attribute of 09SG-102A line. 104

Figure 3-42. Chirp profile of 09SG-120(a) and 09SG-106(b). 106

Figure 3-43. The example of acoustic blanking related to the dome shape morphology (a) and pock mark (b) on the Chirp profile. 107

Figure 3-44. Distinctive acoustics acquired by EK60. From the above, layered acoustic characters, undefined shape, and columnar shape acoustics. 109

Figure 3-45. EK60 (top) and Chirp profile (bottom) showing the piston core location of 09SG-P1. 110

Figure 3-46. Piston core of 09SG-P1 and P5. 112

Figure 3-47. Piston core of 09SG-P03. 113

Figure 3-48. Piston core of 09SG-P06. 114

Figure 3-49. Photo image (left) and X-ray image (right) of Piston core of 09SG-P04. 115

Figure 3-50. Grain size, sorting, and water content of piston core of 09SG-P03. 116

Figure 3-51. Grain size, sorting, and water content of piston core of 09SG-P04. 117

Figure 3-52. Grain size, sorting, and water content of piston core of 09SG-P06. 118

Figure 3-53. Salinity, Cl-, SO42- and alkalinity profiles of core 09SG-4P pore water. 123

Figure 3-54. Na+, Mg2+, K+, and Ca2+ profiles of core 09SG-4P pore water.(이미지참조) 124

Figure 3-55. δ18O, D, δ13C and δ34S profiles of core 09SG-4P pore water.(이미지참조) 125

Figure 3-56. TC, TOC, TN, TS, TOC/TN, TS/TOC, δ13Corg and δ15Norg profiles of core 09SG-4P sediments. 128

Figure 3-57. Cross-plots of TS versus TOC in core 09SG-4P sediments. 130

Figure 3-58. Tmax, HI, S₂, and OI profiles of core 09SG-4P sediments.(이미지참조) 131

Figure 3-59. Modified van Krevelen-type diagrams of HI versus OI and S₂ versus TOC in core 09SG-4P sediments. 132

Figure 3-60. a) Cross-plots of TN versus TOC, δ13Corg versus TOC, and δ13Corg versus TOC/TN in core 09SG-4P sediments.(이미지참조) 133

Figure 3-61. a) Cross-plots of δ15Norg versus TN, δ15Norg versus TOC/TN, and δ15Norg versus δ13Corg in core 09SG-4P sediments.(이미지참조) 134

Figure 3-62. CH₄, CO₂, and δ13Cco2 profiles of core 09SG-4P headspace.(이미지참조) 135

Figure 3-63. Flowchart of 'rayinvr'(Zelt and Smith, 1992). 137

Figure 3-64. (a) Depth converted 2D seismic section(09SG-114) which is the same line as refraction survey line(09SG-114A) and (b)initial depth and velocity model for modeling and traveltime inversion. 138

Figure 3-65. Ray diagram and traveltime curves on initial model(a) and final model(b). Solid black lines in the time domain are calculated traveltime and colored thich lines are observed traveltime. 140

Figure 3-66. Final depth and velocity model after modeling and traveltime inversion. 141

Figure 3-67. Ray diagrams on final model and it's synthetic seismograms are superimposed on the real OBS data. Time dimension is reduced by velocity of 6 km/s. 143

Figure 3-68. Time structure map of seafloor. Contours in milliseconds (two-way traveltime). 145

Figure 3-69. Seismic profiles showing the acoustic basement, Hupo basin and Hupo Bank. (a) is the 32 channel seismic section and (b) is the 8 channel high resolution seismic section. Insert red box in (a) is the area of (b). 146

Figure 3-70. 8 channel high resolution seismic profiles (09SQ-110A) showing the acoustic basement (upper boundary of igneous rock) and the layed sediments terminated by angular unconformity. Insert red box in (a) is the area of (b). 147

Figure 3-71. Isochron map of between seafloor and acoustic basement. Contours in milliseconds (two-way traveltime). Yellow arrow represents the direction of igneous rock body. 148

Figure 3-72. Seismic profiles showing free gas. 150

Figure 3-73. Time structure map of sea floor with the distribution of free gas in study area. Contours in milliseconds (two-way traveltime). 151

Figure 3-74. Distribution map of the shallow gas in the study area. 154

Figure 6-1. Left) C-D diagram for interpreting gas sources (from Pohlman et al., 2009), Right) relationship between paired (co-existing) δ13CCH4 and δ13CCO2, values for interpreting gas sources and isotopic shifts resulting from production and oxidation (from Pohlman et al., 2009).(이미지참조) 157

Figure 6-2. Iodine dating: systematics of the decrease of cosmogenic and build-up of fissiogenic 129I/I ratios (from Fehn et al., 2007).(이미지참조) 158

Figure 6-3. Global distribution of shallow gas. 160

Figure 6-4. FFCPT. 161

Figure 6-5. Russian Mooring OBS system(a) and OBS(b). 162

Figure 6-6. Micro OBS of France. 162

Figure 6-7. Shallow water OBS producted by CGG Veritas. 163

Figure 6-8. Shallow water OBS producted by Fairfield and survey diagram. 163

Figure 6-9. Photograph of the SeaBED AUV (Newman et al., 2008). 164

동해 연안 해역 해저 천부가스 탐지를 위한 천부 탄성파 특성 연구 188

Figure 2.1. Survey Area Map. 192

Figure 2.2. FM Full-Spectrum Seismic Survey Lines. 196

Figure 2.3. Sparker Seismic Survey Lines 197

Figure 5.1. Seismic Data Processing Flow 206

Figure 6.1. FM Full-Spectrum Seismic Section (Line A0530; Refer to Figure 2.2 for Location). 210

Figure 6.2. FM Full-Spectrum Seismic Section (Line B0830; Refer to Figure 2.2 for Location). 212

Figure 6.3. FM Full-Spectrum Seismic Section (Line C1230; Refer to Figure 2.2 for Location). 214

Figure 6.4. FM Full-Spectrum Seismic Section (Line D1130; Refer to Figure 2.2 for Location). 216

Figure 6.5. FM Full-Spectrum Seismic Section (Line E0230; Refer to Figure 2.2 for Location). 218

Figure 6.6. Sparker Seismic Section (Line E0230; Refer to Figure 2.3 for Location) 220

Figure 6.7. 고분해능 탄성파 반사 유형 (Echo Type) AB (Acoustic Blanket) (측선위치 : Figure 2.2). 222

Figure 6.8. 반사 유형 (Echo Type) AB가 나타나는 가스 함유층에서의 스파커 탄성파 기록 (측선위치 : Figure 6.1의 측선위치와 동일). 222

Figure 6.9. 고분해능 탄성파 반사 유형 (Echo Type) AT (Acoustic Turbidity) (측선위치 : Figure 2.2). 223

Figure 6.10. 고분해능 탄성파 반사 유형 (Echo Type) AW (Acoustic Wipe-out) (측선위치 : Figure 2.2). 223

Figure 6.11. 가스 함유층에서의 고분해능 탄성파 반사 유형 (Echo Type) 분포 225

Figure 6.12. 해저면 측사 영상 모자이크 226

Figure 6.13. B구역 확대 모자이크 영상 227

Figure 6.14. D구역 확대 모자이크 영상 228

Figure 6.15. 노출 암반 분포 지역의 해저면 측사 모자이크 영상 229

Figure 6.16. 모래 또는 점토 퇴적층 지역의 해저면 측사 모자이크 영상 229

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
T000032202 전자자료 이용불가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기