본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
전략광물 선광·분체기술 선진화연구 / 지식경제부 [편] 인기도
발행사항
[과천] : 지식경제부, 2009
자료실
전자자료
형태사항
xxii, 156 p. : 삽화, 도표, 사진 ; 30 cm
제어번호
MONO1201010533
주기사항
연구기관: 한국지질자원연구원
연구책임자: 김병곤
원문

목차보기더보기

표제지

제출문

보고서 요약서

요약문

SUMMARY

Contents

목차

제1장 연구개발과제의 개요 25

제1절 기술의 개요 25

제2절 연구개발의 필요성 28

제2장 국내외 기술개발 현황 34

제1절 선광/분체 기술 조사 및 현황 34

제2절 구리광의 일반현황 42

제3절 중저품위 비금속광물 분체화 기술 58

제4절 사용 후 연료 정제 및 기능성 재료개발 59

제3장 연구개발수행 내용 및 결과 61

제1절 금속광의 선별기술 개발 61

제2절 저에너지 탈수/건조 및 고도 해쇄 Mechanism 개발 79

제3절 중저품위 비금속광물 분체화 (백색도 향상포함) 96

제4절 사용 후 연료 정제 및 기능성 재료개발 109

제4장 목표달성도 및 관련분야에의 기여도 140

제5장 연구개발결과의 활용계획 141

제1절 연구성과 141

제2절 연구 성과의 활용방안 144

제6장 연구개발과정에서 수집한 해외과학기술정보 146

제1절 산업광물의 선진선광기술 146

제7장 참고문헌 177

Table 2-1. Special quality of copper 43

Table 2-2. Main form of copper mine 45

Table 2-3. Purpose of copper 46

Table 2-4. Purpose of copper concentrate 47

Table 2-5. Reserve and grade of Copper ore in domestic 48

Table 2-6. Demand and supply results of copper ore in domestic 49

Table 2-7. Import status of iron ore by nations 49

Table 2-8. Reserve & reserve base of iron ore in the world 50

Table 3-1. Chemical analysis(ICP) of jambi mine copper minerals used in this study 62

Table 3-2. Chemical analysis(XRF) of jambi mine copper minerals used in this study 62

Table 3-3. Size distribution and chemical analysis of various size fraction for copper minerals from Jambi mine 63

Table 3-4. Major chemical composition of Jindo porelain stone ore (wt%) 99

Table 3-5. Wet sieving results of ore crushed by a cone crusher with dry sieving 100

Table 3-6. Wet sieving results of ore ground by a ball mill for 5 min 101

Table 3-7. Wet sieving results of ore ground by a ball mill for 10 min 101

Table 3-8. Wet sieving results of ore ground by a ball mill for 15 min 102

Table 3-9. Wet sieving results of ore ground by a ball mill for 20 min 102

Table 3-10. Fe content of the fractions with various intensity of magnetic field 104

Table 3-11. Fe content of the fractions magnetically separated with various number of stages 105

Table 3-12. Comparison Between Pulverized Coal Combustion (PCC) and Fluidized Bed Combustion (FBC) (Botha, 2004) 111

Table 3-13. Comparison of coal combustion conditions in the Donghae and Seochun power station 111

Table 3-14. Experimental parameters of the NaOH concentration, the curing time, and the temperature for manufacturing geopolymers 116

Table 3-15. Weight percentage of Donghae bottom ash separated on sieves and proximate analysis results of each fraction 118

Table 3-16. Weight percentage of Donghae bottom ash separated on sieves after rod milling for 5 min 120

Table 3-17. Weight percentage of Donghae bottom ash separated on sieves after rod milling for 10 min 121

Table 3-18. Weight percentage of Donghae bottom ash separated on sieves after rod milling for 15min 121

Table 3-19. Weight percentage of Donghae bottom ash separated on sieves after rod milling for 20 min 122

Table 3-20. Proximate analysis results of flotation products after rod milling 123

Table 3-21. Proximate analysis results for bottom ashes (wt%) 125

Table 3-22. Proximate analysis results of flotation products from Donghae bottom ash. After two stages of scavenger, the carbon content was reduced to 0.00wt% in the cleaned ash 129

Table 3-23. Chemical composition of the cleamed bottom ash sample from the Donghae power station 132

Table 3-24. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at ambient temperature 133

Table 3-25. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at 60℃ 135

Table 3-26. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at 80℃ 136

Table 3-27. BET-specific surface area of carbon separated from Donghae bottom ash and activated by KOH 138

Fig. 1-1. A diagram presenting the research structure. 26

Fig. 1-2. Suggested research strategies. 27

Fig. 1-3. Secure ratio of metal minerals by year in Korea. 29

Fig. 1-4. Import amount of metal minerals by year of Korea. 30

Fig. 1-5. Import money of metal minerals by year of Korea. 30

Fig. 1-6. Contribution of the research project to KIGAM's mission and national policies. 33

Fig. 2-1. Patent analysis result of mineral processing technologies in chronological order and nationality of the patent holder. 34

Fig. 2-2. Share of the patented mineral processing technologies. 35

Fig. 2-3. Mineral processing technologies in various countries. 36

Fig. 2-4. Patent analysis result of powder technologies in chronological order and nationality of the patent holder. 37

Fig. 2-5. Number of patents on powder technologies in various countries. 37

Fig. 2-6. Share of the patented powder technologies. 38

Fig. 2-7. Number of research papers on mineral processing technologies. 39

Fig. 2-8. Number of research papers on each core technology in mineral processing. 39

Fig. 2-9. Number of research papers on each core technology in mineral processing in chronological order. 41

Fig. 2-10. International price of copper ore by year. 51

Fig. 2-11. Magnetic separator for separation of fine ferruginous minerals. 53

Fig. 2-12. Contact angle between bubble and particle. 54

Fig. 2-13. Flotator used in this test for froth flotation of copper ore. 55

Fig. 2-14. Principle and schematic view of froth flotation. 56

Fig. 2-15. Principle and schematic view of column flotation. 57

Fig. 3-1. XRD analysis of raw copper sample from Indonesia Zambi. 61

Fig. 3-2. Mapping of raw copper minerals by SEM-EDAX 63

Fig. 3-3. Flowsheet for froth flotation of copper minerals 64

Fig. 3-4. Effect of magnet intensity on grade & recovery of Cu in wet-magnetic separation 66

Fig. 3-5. Effect of dosage of collector on grade and recovery of copper in froth flotation. 67

Fig. 3-6. Effect of pH on grade & recovery of copper in froth flotation 68

Fig. 3-7. Effect of kinds of collector on grade & recovery of copper in froth flotation 69

Fig. 3-8. Grade and recovery of Ag and copper sulfide in froth flotation 70

Fig. 3-9. Effect of dosage of collector on grade and recovery of copper in froth flotation 71

Fig. 3-10. Effect of pH on grade & recovery of copper in froth flotation 72

Fig. 3-11. Effect of cleaning time on grade & recovery of copper in froth flotation. 73

Fig. 3-12. Effect of dosage of frother on grade & recovery of copper in froth flotation. 74

Fig. 3-13. Grade and recovery of final concentrates separated from froth flotation. 75

Fig. 3-14. Photo of all products separated from froth flotation. 76

Fig. 3-15. SEM/EDAX(×500) on raw copper minerals (-150mesh). 77

Fig. 3-16. SEM/EDAX(×500) on final concentrate (-150mesh). 77

Fig. 3-17. Attraction and repulsive forces between stabilized colloidal particles. 80

Fig. 3-18. Attraction and repulsive forces between unstable colloidal particles. 81

Fig. 3-19. Basic principles of zeta potential. 82

Fig. 3-20. Electric double layer model. 83

Fig. 3-21. Fundamental principle of micro bubbled slurry. 83

Fig. 3-22. Schematic diagram for the economical disagglomeration process in the study. 84

Fig. 3-23. Compressive strength machine. 85

Fig. 3-24. Kaolin clay slurry by the addition of a surfactant. 86

Fig. 3-25. Micro bubbled cream made by aeration. 87

Fig. 3-26. Slurry samples consisting of two different clays. 87

Fig. 3-27. Facilities for wet disagglomeration. 88

Fig. 3-28. Particle size distribution of raw sample. 88

Fig. 3-29. Drying efficiency of slurries. 89

Fig. 3-30. Drying with Improved efficiency. 90

Fig. 3-31. Pore size in the surface of completely dried slurries. 91

Fig. 3-32. Pore size controlled by the amount of additives. 92

Fig. 3-33. Compressive strength variation in terms of the amount of additives. 92

Fig. 3-34. Efficiency of disagglomeration in D50 particle size.(이미지참조) 93

Fig. 3-35. Efficiency of disagglomeration in D90 particle size.(이미지참조) 94

Fig. 3-36. Particle size distribution curves of disagglomerated particles treated with different surfactants. 95

Fig. 3-37. Cumulative size distribution of disagglomerated particles treated with different surfactants. 95

Fig. 3-38. Experimental condition for Fe removal process from a porcelain stone. 98

Fig. 3-39. X-ray diffraction pattern of porcelain stone produced in Jin Island. 99

Fig. 3-40. Fe₂O₃ content of the non-magnetic fraction with various top particle size. 103

Fig. 3-41. Fe₂O₃ content of the non-magnetic fraction with various top particle size. 104

Fig. 3-42. Fe₂O₃ content of the non-magnetic fraction with various number of stages. 106

Fig. 3-43. Fe₂O₃ content of a porcelain stone produced by selective leaching of Fe with HCl. 106

Fig. 3-44. Fe₂O₃ content of a porcelain stone produced by selective leaching of Fe with H₂SO₄. 107

Fig. 3-45. Whiteness of a purified porcelain stone with HCl. 108

Fig. 3-46. Whiteness of a purified porcelain stone with H₂SO₄. 108

Fig. 3-47. Location map of some domestic power stations. 110

Fig. 3-48. Ash storage pond in Seochun power station. 114

Fig. 3-49. Ash storage pond in Donghae power station. 114

Fig. 3-50. Schematic process flow sheet for the synthesis of geopolymer from FBC bottom ash. 115

Fig. 3-51. Froth flotation circuit for the unburned carbon separation. 115

Fig. 3-52. A tailor-made furnace used for activation of unburned carbon. 116

Fig. 3-53. Compression body prepared for measuring compressive strength. 117

Fig. 3-54. Weight percentage in the size fractions with accumulated bar plot. 119

Fig. 3-55. X-ray diffraction pattern of bottom ash sample from the Donghae power plant. 124

Fig. 3-56. X-ray diffraction pattern of bottom ash sample from the Seochun power station. 125

Fig. 3-57. Heat values in size fractions of Donghae bottom ash. 126

Fig. 3-58. Flotation performance of Donghae bottom ash with varying dosage of kerosene. 127

Fig. 3-59. Flotation performance with varying dosage of pine oil. 127

Fig. 3-60. (a) Cleaned ash and (b) the carbon concentrate prepared from Donghae bottom ash. 128

Fig. 3-61. SEM micrographs of a carbon particle separated from Donghae bottom ash: (a) secondary electron image and (b) back-scattered electron image. 128

Fig. 3-62. Carbon contents of the bottom ash size factions. 130

Fig. 3-63. Carbon contents of the carbon concentrates at various dosages of a collector, kerosene. 131

Fig. 3-64. Carbon contents of the carbon concentrates at various dosages of a frother, pine oil. 131

Fig. 3-65. Scanning electron micrographs of carbon particles separated from the (a) Donghae and (b) Seochun bottom ashes. 132

Fig. 3-66. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at ambient temperature. 134

Fig. 3-67. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at 60℃. 135

Fig. 3-68. Compressive strength of the compression bodies from the cleaned Donghae bottom ash cured at 80℃. 136

Fig. 3-69. X-ray diffraction pattern of the geopolymer reacted with 8M NaOH solution and cured at 60℃ for 14 days. 137

Fig. 3-70. SEM micrographs of an unburned carbon sample (DBM-F-C-8) activated with (a) 10㎖ and (b) 20㎖ of 45wt% KOH solution. 139

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
T000032299 전자자료 이용불가

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기