• 저자명 참조
  • 용어관계사전
  • 검색히스토리
  • 자동완성
  • 상세검색

    자료구분

  • 검색: 8 ms /
통합검색 (전체 1건)

추천

이용현황보기

이용현황보기 목록에 대한 테이블로 등록번호,권별정보,자료실,이용여부 로 구성
등록번호 권별정보 자료실 이용여부
T000032468 전자자료 이용불가

목차보기

표제지

신·재생에너지 기술개발사업 최종(완료)보고서 제출서

제출문

요약문

SUMMARY

CONTENTS

목차

제1장 연구개발과제의 개요 29

제1절 연구 개발의 목적 29

제2절 필요성 및 범위 31

1. 기술적 측면 31

2. 산업, 경제적 측면 33

3. 정책적 측면 34

제2장 국내 외 연구 동향 35

제1절 국내 기술 현황 35

제2절 국외 개발 현황 36

제3장 연구개발수행 내용 및 결과 39

제1절 유동층 반응 시스템 39

1. 유동층 반응기에서 카본 블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소 생산 39

2. 유동층 반응기에서 카본 블랙 촉매를 이용한 프로판의 촉매분해에 의한 수소 생산 89

3. 유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매 분해에 의한 수소 제조 128

4. Scale-up 반응기에서의 카본 블랙 촉매를 이용한 메탄의 촉매 분해에 의한 수소 생산 160

5. Pilot plant에서의 카본 블랙 촉매를 이용한 메탄의 촉매 분해에 의한 수소 생산 177

제2절 미소 반응기를 이용한 촉매 특성 연구 210

1. 카본 블랙 촉매를 이용한 메탄 분해에 의한 수소 생산 210

2. 아세틸렌 흡착을 통한 카본 블랙의 활성점 연구 252

3. 카본 블랙 촉매를 이용한 에탄분해에 의한 수소 생산 274

4. 카본 블랙 촉매 상에서 에탄이 포함된 메탄 분해에 의한 수소 생산 318

제3절 LPG 분해 실험 361

1. LPG 촉매 분해반응 실험 361

2. 프로판 분해 369

3. 부탄 분해 389

4. 프로판-부탄 혼합가스 분해 422

5. 상용 LPG 분해 441

6. 반응물 변화에 따른 탄화 수소 분해 반응 462

제4절 카본 블랙 재활용 474

1. 메탄 분해용 탄소 촉매의 물성 연구 474

2. 카본 블랙의 고무 충진제 연구 500

3. 표면 처리된 카본 블랙/고분자의 전자파 차폐 특성 549

제5절 반응기 열전달 개선 및 공정 simulation 584

1. 수치 해석 모델 및 이의 활용 프로세스 수립 584

2. 여천 Pilot plant 시뮬레이션 수행 587

3. 반응기 형상의 제안 591

4. Double Jacket External heating 방식 반응기의 주요 특징 591

5. Internal heating and external reheat 방식 반응기의 주요 특징 591

6. Helical fin type 반응기의 형상과 주요 특징 594

7. HRS 방식의 고온 유동층 화학반응기의 시뮬레이션 결과 598

8. 경계조건 확보를 위한 실험 수행 600

제4장 목표달성도 및 관련 분야에의 기여도 605

제1절 목표달성도 605

제2절 관련 분야에의 기여도 608

제5장 연구 개발 결과와 활용계획 618

제6장 연구 개발과정에서 수집한 해외과학기술정보 619

제7장 참고 문헌 622

제1절 유동층 반응 시스템 622

제2절 미소 반응기를 이용한 카본 블랙 촉매 특성 연구 625

제3절 LPG 분해 실험 628

제4절 카본 블랙 재활용 631

제5절 반응기 열전달 개선 및 공정 simulation 634

Appendix - High Purity Hydrogen PSA 637

Table 1. 국내 특허 현황 36

Table 2. 국외 특허 현황 38

Table 1-1. 실험에 사용한 카본블랙의 물리 화학적 특성. 40

Table 1-2. 실험에 사용한 카본블랙의 반응차수 및 활성화 에너지. 68

Table 1-3. 반응 후 카본블랙의 물리 화학적 특성 변화 81

Table 1-4. 카본블랙 분류 91

Table 1-5. 실험에 사용한 카본블랙의 물리 화학적 특성. 128

Table 1-6. quartz 반응기와 scale-up 반응기의 차이점. 161

Table 1-7. quartz 반응기, scale-up 반응기 & pilot plant 비교 179

Table 1-8. Composition of reactant 184

Table 2-1. Carbon blacks used in the experiment 212

Table 2-2. Reaction orders and activation energies for rubber & specialty blacks 231

Table 2-3. Methane and ethane flow rates and feed composition 319

Table 2-4. Contribution by methane and ethane decomposition to H₂ production(Basis : 100 mol CH₄ fed, ethane/methane = 5/95) 332

Table 2-5. Contribution by methane and ethane decomposition to H₂ production (Basis : 100 mol CH₄ fed, ethane/methane = 10/90) 341

Table 2-6. Contribution by methane and ethane decomposition to H₂ production (Basis : 100 mol CH₄ fed, ethane/methane = 15/85) 350

Table 3-1. Commercially available carbon based catalysts in the decomposition of hydrocarbon. 363

Table 3-2. Comparison of product distribution, conversion, and hydrogen yield over various carbon-based catalysts at 750 ℃. 376

Table 3-3. Variation of conversion and product distribution as function of time on stream over activated carbon and carbon black catalysts at 750 ℃ 386

Table 3-4. Product distributions (mol %) in thermal decomposition of n-butane. 400

Table 3-5. Product distributions (mol %) in catalytic decomposition of n-butane. 401

Table 3-6. Composition of commercial LPG. 441

Table 3-7. Conversion of methane for hydrogen sulfide concentration. in the methane decomposition. 464

Table 3-8. Conversion of methane for hydrogen sulfide concentration. in the methane decomposition. 468

Table 4-1. Properties of Raw Carbon Black Used as Catalysts for Methane Decomposition 479

Table 4-2. Properties of N330 (Crushed Pellet) Black with Different Weight Gain before and after Reaction 479

Table 4-3. Pore Analyses of Carbon Black Samples before and after Reaction 480

Table 4-4. Properties of N330-f Black before and after Reaction for 8 hr with different weight Gain 480

Table 4-5. Properties of HI-900L black before and after reaction at 850℃ for 8 hr with different weight gain 483

Table 4-6. Properties of carbon nanofibers used as methane decomposition catalysts. 491

Table 4-7. BET surface area and mass of carbon catalysts with methane decomposition at different conditions 495

Table 4-8. Compounding formulations of composites 506

Table 4-9. Properties of N330(F) carbon blacks before and after reaction 507

Table 4-10. Properties of carbon blacks before and after surface modification 525

Table 4-11. Properties of N330(F) carbon blacks treated by CO₂ activation 541

Table 4-12. Surface resistivity of SBR rubber composites as a function of loading ratio 542

Table 4-13. Properties of carbon blacks before and after acid and alkali treatments 555

Table 4-14. Properties of carbon blacks before and after heat treatments 560

Table 4-15. Properties of N330(F) Carbon Blacks Treated by CO₂ Activation 564

Table 4-16. Variations of the electrical properties of carbon blacks and their PVA coating materials with different chemical treatments 569

Table 4-17. Variations of the electrical properties of carbon blacks and their PVA coating materials with different heat treatment temperature 569

Table 4-18. Variations of the electrical properties of carbon blacks and their PVA coating materials before and after CO₂ activation 570

Table 4-19. Variations of the electrical properties of carbon blacks and their PVDF coating materials with different chemical treatments 576

Table 4-20. Variations of the electrical properties of carbon blacks and their PVDF coating materials with different heat treatment temperature 576

Table 4-21. Variations of the electrical properties of carbon blacks and their PVDF coating materials before and after CO₂ activation 577

Table 4-22. Variations of the electrical properties of carbon blacks and their PVDF/PVP coating materials with different ratios 582

Figure 1-1. Pressure Drop Measurement. 41

Figure 1-2. Schematic of fluidized bed reactor system. 43

Figure 1-3. Minimum fluidization velocity of carbon black(N330). 45

Figure 1-4. Minimum fluidization velocity of carbon black(HI-900L). 46

Figure 1-5. Minimum fluidization velocity of carbon black(HI-20L). 47

Figure 1-6. Minimum fluidization velocity of carbon black(HI-170). 48

Figure 1-7. Minimum fluidization velocity of carbon black(Ketjen black EC-600JD). 49

Figure 1-8. CH₄ conversion vs. time over CB(HI-170) with different reaction temperature (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 51

Figure 1-9. CH₄ decomposition rate vs. time over CB(HI-170) with different reaction temperature (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 52

Figure 1-10. CH₄ conversion vs. time over carbon blacks with different reaction temperature (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 53

Figure 1-11. CH₄ conversion vs. time over CB(N330) with different gas velocity (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 850 ℃). 55

Figure 1-12. CH₄ decomposition rate vs. time over CB(N330) with different gas velocity (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 850 ℃). 56

Figure 1-13. CH₄ conversion vs. time over carbon blacks with different gas velocity (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 850 ℃). 57

Figure 1-14. CH₄ decomposition rate vs. time over carbon blacks with different gas velocity (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 850 ℃). 58

Figure 1-15. CH₄ conversion vs. time over carbon blacks with different surface area (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 900 ℃). 60

Figure 1-16. CH₄ conversion vs. surface area over carbon blacks (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 900 ℃). 61

Figure 1-17. CH₄ decomposition rate vs. time over carbon blacks with different surface area (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 900 ℃). 62

Figure 1-18. CH₄ decomposition vs. surface area over carbon blacks (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 900 ℃). 63

Figure 1-19. CH₄ conversion vs. time over CB(N330) with different catalyst loading (Experiment Conditions : Gas. velocity 1.0 Umf, Reaction Temp. 900 ℃)(이미지참조) 65

Figure 1-20. CH₄ conversion vs. time over CB(N330) with different catalyst loading (Experiment Conditions : Gas. velocity 1.0 Umf, Reaction Temp. 900 ℃)(이미지참조) 66

Figure 1-21. Arrhenius plot for methane decomposition over carbon blacks(rubber black, conductive black). 69

Figure 1-22. Arrhenius plot for methane decomposition over conductive carbon black(HI-black). 70

Figure 1-23. CH₄ conversion vs. time over CB(N330) (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 73

Figure 1-24. Minimum fluidization velocity of used carbon black(N330). 74

Figure 1-25. CH₄ conversion vs. time over CB(N330) with used catalyst (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 75

Figure 1-26. CH₄ decomposition rate vs. time over CB(N330) with used catalyst (Experiment Conditions : Cat. loading 100 g, Gas Velocity 1.0 Umf).(이미지참조) 76

Figure 1-27. CH₄ conversion and carbon deposit vs. time over CB(N330) (Experiment Conditions : Cat. loading 100 g, Reaction Temp.850 ℃). 78

Figure 1-28. The specific carbon deposition(Wc) at activity stabilization vs. surface area of fresh carbon blacks (Experiment Conditions : Cat. loading 100 g, Reaction Temp. 850 ℃)(이미지참조) 79

Figure 1-29. SEM images for carbon black(HI-900L). 82

Figure 1-30. SEM images for carbon blacks(HI-170). 83

Figure 1-31. TEM images for carbon black(N330). 84

Figure 1-32. TEM images for carbon black(HI-900L). 85

Figure 1-33. TEM images for carbon blacks. 86

Figure 1-34. TEM images for carbon black(Ketjen black EC 600JD) 87

Figure 1-35. Schematic of fluidized bed reactor system 92

Figure 1-36. C₃H8 conversion over various carbon blacks at different temperature(이미지참조) 96

Figure 1-37. C₃H6 selectivity over various carbon blacks at different temperature(이미지참조) 97

Figure 1-38. C₂H6 selectivity over various carbon blacks at different temperature(이미지참조) 98

Figure 1-39. C₂H₄ selectivity over various carbon blacks at different temperature(이미지참조) 99

Figure 1-40. CH₄ selectivity over various carbon blacks at different temperature(이미지참조) 100

Figure 1-41. C(s) selectivity over various carbon blacks at different temperature 101

Figure 1-42. H₂ yield over various carbon blacks at different temperature 102

Figure 1-43. The effect of reaction temperature on gas composition(N330(F)) 103

Figure 1-44. C₃H8 conversion over carbon black at different gas velocity(N330(F))(이미지참조) 106

Figure 1-45. The effect of gas velocity on gas composition(N330(F)) 107

Figure 1-46. C₃H8 decomposition rate over carbon black at different gas velocity(N330(F))(이미지참조) 108

Figure 1-47. H₂ yield over carbon black at different gas velocity(N330(F)) 109

Figure 1-48. C₃H8 conversion over carbon black at different catalyst loading(N330(F))(이미지참조) 111

Figure 1-49. H₂ yield over carbon black at different catalyst loading(N330(F)) 112

Figure 1-50. Specific surface area of C in the reactor vs. the mass of deposited carbon per mass of fresh carbon blacks (rubber & color black) 114

Figure 1-51. Specific surface area of C in the reactor vs. the mass of deposited carbon per mass of fresh carbon blacks 115

Figure 1-52. Relative specific surface area of the whole C in the reactor vs. the mass of deposited carbon per mass of fresh carbon blacks 116

Figure 1-53. Secondary particle size of carbon black vs. the mass of deposited carbon per mass of fresh & used carbon black(N330(F)) 118

Figure 1-54. TEM images of fresh and used N330(F) : (a) fresh N330(F), (b) 600℃, 8 h, Wc=0.165, m (c) 700℃, 8 h, Wc=0.541, (d) 800℃-2Umf, 8 h, Wc=1.370(이미지참조) 121

Figure 1-55. TEM images of fresh and used Raven900(F) : (a) fresh Raven(F), (b) 700℃, 8 h, Wc=0.427, (c) 800℃, 8 h, Wc=1.042(이미지참조) 123

Figure 1-56. TEM images of fresh and used EC-600JD(F) : (a) fresh EC-600JD(F), (b) 700℃, 8 h, Wc=0.804, (c) 800℃, 8 h, Wc=2.163(이미지참조) 124

Figure 1-57. TEM images of fresh and used HI-20L(F) : (a) fresh HI-20L(F), (b) 800℃, 8 h, Wc=0.912(이미지참조) 125

Figure 1-58. TEM images of fresh and used HI-170(F) : (a) fresh HI-170(F), (b) 700℃, 8 h, Wc=0.098(이미지참조) 126

Figure 1-59. Schematic of fluidized bed reactor system. 130

Figure 1-60. CH₄ Conversion vs. time over carbon black(N330) with different reaction temperature (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 134

Figure 1-61. CH₄ Conversion vs. time over carbon black(N330) with different gas velocity (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 135

Figure 1-62. CH₄ decomposition rate vs. time over carbon black(N330) with different gas velocity (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 136

Figure 1-63. CH₄ Conversion vs. time over carbon black(N330) with different catalyst loading (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 137

Figure 1-64. Aggregates size of used carbon black vs. Wc (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 140

Figure 1-65. Aggregates size of used carbon black and Wc vs. different reaction temperature (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 141

Figure 1-66. Aggregates size of used carbon black and Wc vs. different gas velocity (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 142

Figure 1-67. Aggregates size of used carbon black and Wc vs. different catalyst loading (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 143

Figure 1-68. Specific surface area vs. Wc (반응 가스 내 CH₄, C₃H8 비율 : 9:1)(이미지참조) 145

Figure 1-69. TEM image of fresh carbon black(N330) 148

Figure 1-70. Hess-Ban-Heidenreich model of carbon black structure[Harris, 1999] 149

Figure 1-71. TEM images of used carbon black(N330) (a) Experiment condition : temperature 900 ℃, gas velocity 1 Umf, catalyst loading 200 g, Wc 0.1260...(이미지참조) 150

Figure 1-72. TEM images of used carbon black(N330) (a) Experiment condition : temperature 900 ℃, gas velocity 1 Umf, catalyst loading 100 g, Wc 0.1940...(이미지참조) 151

Figure 1-73. TEM images of used carbon black(N330) (a) Experiment condition : temperature 850 ℃, gas velocity 1 Umf, catalyst loading 100 g, Wc 0.1430, × 200.000...(이미지참조) 152

Figure 1-74. TEM images of used carbon black(N330) Experiment condition : temperature 850 ℃, gas velocity 3 Umf, catalyst loading 100 g, Wc 0.2890, × 500.000(이미지참조) 153

Figure 1-75. TEM images of used carbon black(N330) Experiment condition : temperature 875 ℃, gas velocity 1 Umf, catalyst loading 100 g, Wc 0.1520, × 500.000(이미지참조) 154

Figure 1-76. CH₄ Conversion vs. mol. fraction of reaction temperature with different mol. fraction of C₃H8(이미지참조) 157

Figure 1-77. Production rate of H₂ vs. reaction temperature (Experiment condition : catalyst loading 100 g, gas velocity 1 Umf)(이미지참조) 158

Figure 1-78. Schematic of scale-up reactor system. 162

Figure 1-79. Image of scale-up reactor system. 163

Figure 1-80. CH₄ Conversion & Production rate of H₂ vs. Gas velocity (Reaction condition : Temperature 930 ℃, Catalyst loading 600 g) 165

Figure 1-81. CH₄ Conversion & Production rate of H₂ vs. Reaction Temperature (Reaction condition : Gas velocity 3 Umf, Catalyst loading 600 g)(이미지참조) 166

Figure 1-82. CH₄ Conversion vs. experiment condition 168

Figure 1-83. 반응기 주입구 형태 169

Figure 1-84. CH₄ Conversion vs. reaction condition over carbon balck 170

Figure 1-85. Production rate of H₂ vs. reaction condition over carbon black 171

Figure 1-86. CH₄ Conversion vs. Pressure with different reaction temperature 174

Figure 1-87. Production rate of H₂ vs. Pressure with different reaction temperature 175

Figure 1-88. Images of pilot plant 180

Figure 1-89. Schematic of pilot pant 181

Figure 1-90. Images of distributor 182

Figure 1-91. Images of back-pressure regulator 183

Figure 1-92. G/C raw data of reactant 184

Figure 1-93. CH₄ Conversion over carbon black with different reaction temperature 186

Figure 1-94. Production rate of H₂ over carbon balck with different reaction temperature (원료 내 수소 미포함) 187

Figure 1-95. Production rate of H₂ over carbon balck with different reaction temperature (원료 내 수소 포함) 188

Figure 1-96. CH₄ Conversion over carbon black with different gas velocity 191

Figure 1-97. Production rate of H₂ over carbon balck with different gas velocity (원료 내 수소 미포함) 192

Figure 1-98. Production rate of H₂ over carbon balck with different gas velocity (원료 내 수소 포함) 193

Figure 1-99. 반응기 하부에 설치된 furnace 195

Figure 1-100. Furnace 설치 전, 후의 CH₄ Conversion 196

Figure 1-101. Furnace 설치 전, 후의 반응기 내부 temperature profile 197

Figure 1-102. Tuyere distributor 199

Figure 1-103. 분산판 형태에 따른 CH₄ Conversion 200

Figure 1-104. 분산판 형태에 따른 Production rate of H₂ (원래 내 수소 포함) 201

Figure 1-105. CH₄ Conversion and Production rate of H₂ (Reaction condition : Temperature 950 ℃, Catalyst loading 15 kg, Gas velocity 2 Umf)(이미지참조) 203

Figure 1-106. CH₄ Conversion and Production rate of H₂ (Reaction condition : Temperature 950 ℃, Catalyst loading 15 kg, Gas velocity 3 Umf)(이미지참조) 204

Figure 1-107. PSA System 206

Figure 1-108. 열교환기 207

Figure 1-109. G/C raw data 208

Figure 2-1. Schematic diagram of reactor system. 213

Figure 2-2. CH₄ conversion vs. time in the absence of carbon black without and with rock wool in the reactor (CH₄ flow rate=25 cm³(STP)/min).(이미지참조) 217

Figure 2-3. Arrhenius plot for homogeneous gas-phase methane decomposition. 218

Figure 2-4. CH₄ conversion vs. time over carbon black. (temp.=1123 K, VHSV=15.0 L/gCB·h)(이미지참조) 220

Figure 2-5. CH₄ conversion vs. time over pelletized rubber blacks (temp.=1223 K, VHSV=15,000 cm³/h·g-cat). 221

Figure 2-6. Methane conversion over CBs vs. time (temperature = 1173 K, VHSV = 15,000 cm³/h·g-cat). 222

Figure 2-7. Methane conversion over CBs vs. time (temperature = 1123 K, VHSV = 15,000 cm³/h·g-cat). 223

Figure 2-8. Rate of CH₄ decomposition vs. specific surface area of pelletized rubber blacks (temp.=1223 K, VHSV=15,000 cm³/h·g-cat). 225

Figure 2-9. Rate of methane decomposition over CBs against the specific surface area of fresh CBs (temperature = 1123 K, VHSV = 15,000 cm³/h·g-cat). 226

Figure 2-10. Rate of methane decomposition over carbon blacks as a function of methane partial pressure(temp.=1173 K, VHSV=15.0 L/gCB·h).(이미지참조) 228

Figure 2-11. Rate of CH₄ decomposition as a function of CH₄ partial pressure over DCC-N103(P) and DOC-N330(P) (temp.=1173 K). 229

Figure 2-12. Rate of methane decomposition over specialty blacks as a function of methane partial pressure (temperature = 1173 K). 230

Figure 2-13. CH₄ conversion vs. time over DCC-N103(P) at different temperatures (VHSV = 15,000 cm³/h·g-cat). 234

Figure 2-14. CH₄ conversion vs. time over DCC-N330(F) at different temperatures. (VHSV = 15.0 L/gh) 235

Figure 2-15. CH₄ conversion vs. time over BP-2000 at different temperatures. (VHSV = 15.0 L/gh) 236

Figure 2-16. Arrhenius plot for CH₄ decomposition over DCC-N103(P) and DCC-N330(P) (VHSV = 15,000 cm³/h·g-cat a is the reaction order). 237

Figure 2-17. Arrhenius plot for methane decomposition over specialty blacks (VHSV = 15,000 cm³/h·g-cat; α = the reaction order in Table 2-2). 238

Figure 2-18. Specific BET SA of the product carbon vs. the mass of deposited carbon per mass of fresh N330(F) and BP-2000. 240

Figure 2-19. Relative total SA of the whole carbon in the reactor vs. the mass of deposited carbon per mass of fresh N330(F) and BP-2000. 241

Figure 2-20. SEM images for fresh carbon blacks. 243

Figure 2-21. SEM images of after reaction(VHSV=15.0 L/g·h) 244

Figure 2-22. TEM images of N330(F) 246

Figure 2-23. TEM images of BP-2000 247

Figure 3-24. TEM images of HI-20L, HI-900L and EC-600JD 248

Figure 2-25. Schematic diagram for C₂H₂ adsorption/TPD on carbon blacks. 254

Figure 2-26. TCD responses from acetylene pulse injection for N330(P) at different adsorption temperature. 257

Figure 2-27. Effect of temperature on physical and activated adsorption 258

Figure 2-28. TCD responses from acetylene pulse injection for EC-600JD at different adsorption temperature. 259

Figure 2-29. CH₄ decomposition rate vs. cumulative C₂H₂ adsorption at 773 K on various carbon blacks (correlation coefficient r² and slope [mol CH₄/mol C₂H₂·min] = 0.806 and 0.424 for 773/1123 K data, 0.792 and... 261

Figure 2-30. CH₄ decomposition rate vs. C₂H₂ consumption at 873 K for cach pulse on various carbon blacks (correlation coefficient r² and slope [mol CH₄/mol C₂H₂·min] = 0.814 and 1.074 for 873/1123 K data, 0.792 and... 262

Figure 2-31. Mass spectroscopy responses of C₂H₂ and H₂ from acetylene pulse injections at 773 K in the presence of N330(P) saturated with chemisorbed C₂H₂ and from subsequent TPD. 265

Figure 2-32. Mass spectroscopy responses of C₂H₂ and H₂ from acetylene pulse injections at 873 K in the presence of N330(P) having exposed to about 30 C₂H₂ pulses and from subsequent TPD. 266

Figure 2-33. A scheme for cumulative C₂H₂ chemisorption processes at 773 K. 269

Figure 2-34. A scheme for constant C₂H₂ consumption processes at 773 K (the numbers inside 6-member rings are the count of injections). 270

Figure 2-35. A scheme for C₂H₂ chemisorption processes involving zigzag face and corner. 271

Figure 2-36. A scheme for C₂H₂ chemisorption processes on zigzag face. 272

figure 2-37. Schematic diagram for C₂H6 decomposition on carbon blacks.(이미지참조) 276

Figure 3-38. C₂H6 conversion over various rubber-grade carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 280

Figure 2-39. C₂H₄ selectivity over various rubber-grade carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 281

Figure 2-40. CH₄ selectivity over various rubber-grade carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 282

Figure 2-41. C(s) selectivity over various rubber-grade carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 283

Figure 2-42. H₂ yield over various rubber-grade carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 284

Figure 2-43. C₂H6 conversion over various specialty carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 287

Figure 2-44. C₂H₄ selectivity over various specialty carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 288

Figure 2-45. CH₄ selectivity over various specialty carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 289

Figure 2-46. C(s) selectivity over various specialty carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 290

Figure 2-47. H₂ yield over various specialty carbon blacks at different temperature (VHSV = 15,000 cm³/h·gCB).(이미지참조) 291

Figure 2-48. C₂H6 conversion and CH₄ selectivity at 1,023 K vs. specific surface areas of carbon blacks (VHSV = 15,000 cm³/h·gCB).(이미지참조) 292

Figure 2-49. C₂H₄selectivity, C(s) selectivity and H₄ yield at 1,023 K vs. specific surface areas of carbon blacks (VHSV = 15,000 cm³/h·gCB).(이미지참조) 293

Figure 2-50. Ethane conversion and methane selectivity in long-term tests with N330(F) and BP-2000 at 1073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 295

Figure 2-51. Ethane selectivity and hydrogen yield in long-term tests with N330(F) and BP-2000 at 1073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 296

Figure 2-52. Specific surface area of the whole carbon vs. the mass of deposited carbon per mass of original CB. 299

Figure 2-53. Relative total surface area of the whole carbon in the reactor vs. the mass of deposited carbon per mass of original CB. 300

Figure 2-54. SEM images for fresh carbon blacks. 306

Figure 2-55. SEM images of N330(P) after ethane decomposition reaction at 1,073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 307

Figure 2-56. SEM images of N330(F) after ethane decomposition reaction at 1,073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 308

Figure 2-57. SEM images of BP-2000 after ethane decomposition reaction at 1,073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 309

Figure 2-58. TEM images for fresh carbon blacks. 312

Figure 2-59. TEM images of N330(F) after ethane decomposition reaction at 1.073 K (VHSV = 15,000 cm³/h·gCB).(이미지참조) 313

Figure 2-60. TEM images of N330(P) after ethane decomposition reaction for 2 hours (VHSV = 15,000 cm³/h·gCB).(이미지참조) 315

Figure 2-61. TEM images of BP-2000 after ethane decomposition reaction for 2 hours (VHSV = 15,000 cm³/h·gCB).(이미지참조) 316

Figure 2-62. Schematic diagram of the apparatus for C₂H6-containing CH₄ decomposition on carbon blacks.(이미지참조) 320

Figure 2-63. C₂H6 conversion over various carbon blacks at different temperatures (ethane/methane = 5/95, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 324

Figure 2-64. C₂H₄ yield over various carbon blacks at different temperatures (ethane/methane = 5/95, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 326

Figure 2-65. Apparent CH₄ conversion over various carbon blacks at different temperatures (ethane/methane = 5/95, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 328

Figure 2-66. H₂ yield over various carbon blacks at different temperatures (ethane/methane = 5/95, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 329

Figure 2-67. C(s) yield over various carbon blacks at different temperatures (ethane/methane = 5/95, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 330

Figure 2-68. C₂H6 conversion over various carbon blacks at different temperatures (ethane/methane = 10/90, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 334

Figure 2-69. C₂H₄ yield over various carbon blacks at different temperatures (ethane/methane = 10/90, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 336

Figure 2-70. Apparent CH₄conversion over various carbon blacks at different temperatures (ethane/methane = 10/90, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 337

Figure 2-71. H₂ yield over various carbon blacks at different temperatures (ethane/methane = 10/90, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 339

Figure 2-72. C(s) yield over various carbon blacks at different temperatures (ethane/methane = 10/90, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 340

Figure 2-73. C₂H6 conversion over various carbon blacks at different temperatures (ethane/methane = 15/85, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 345

Figure 2-74. C₂H₄ yield over various carbon blacks at different temperatures (ethane/methane = 15/85, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 346

Figure 2-75. Apparent CH₄ conversion over various carbon blacks at different temperatures (ethane/methane = 15/85, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 347

Figure 2-76. H₂ yield over various carbon blacks at different temperatures (ethane/methane = 15/85, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 348

Figure 2-77. C(s) yield over various carbon blacks at different temperatures (ethane/methane = 15/85, VHSV = 18,000 cm³ CH₄/h·gCB).(이미지참조) 349

Figure 2-78. CH₄ conversion in CH₄-only decomposition (VHSV = 15,000 cm³ CH₄/h·gCB) and C₂H6-containing CH₄ decomposition (ethane/methane = 5/95; VHSV = 18,947 cm³ CH₄/h·gCB) over various carbon blacks at...(이미지참조) 352

Figure 2-79. Concentration(in mol%) of C₂H₄ in the effluent vs. apparent CH₄ conversion 355

Figure 2-80. TEM images of N330(F) after C₂H6-containing CH₄ decomposition for 2 hours (ethane/methane = 5/95).(이미지참조) 357

Figure 2-81. TEM images of N330(F) after C₂H6-containing CH₄ decomposition for 2 hours(ethane/methane = 10/90).(이미지참조) 358

Figure 2-82. TEM images of N330(F) after C₂H6-containing CH₄ decomposition for 2 hours (ethane/methane = 15/85).(이미지참조) 359

Figure 3-1. LPG decomposition Process. 362

Figure 3-2. The schematic diagram for LPG decomposition. 366

Figure 3-3. The schematic diagram for LPG decomposition with using Cahn balance(TGA). 367

Figure 3-4. Cahn balance(TGA). 368

Figure 3-5. Gas composition in thermodynamic equilibrium of the propane decomposition process. 371

Figure 3-6. Product distribution for non-catalytic thermal cracking of propane as a function of reactor temperature. 372

Figure 3-7. Mass spectrometer signal of C₃H8 for non-catalytic thermal and catalytic decomposition of propane.(이미지참조) 373

Figure 3-8. Mass spectrometer signal of H₂ for non-catalytic thermal and catalytic decomposition of propane. 374

Figure 3-9. Product distribution from catalytic and thermal cracking of propane as a function of temperature. 379

Figure 3-10. The formation of hydrocarbons at 700 ℃ in the hydrogenation of carbon deposited from propane catalytic cracking 380

Figure 3-11. XRD analysis of carbon catalysts by propane decomposition. 381

Figure 3-12. The amount of carbon deposited from propane over BP-1100 catalyst. 382

Figure 3-13. Product distribution and conversion over BP-1100 catalyst at 950 ℃. 385

Figure 3-14. Product distribution and conversion over DCC-N330 catalyst at 750 ℃. 388

Figure 3-15. Conversion of butane over the carbon black based catalysts. 399

Figure 3-16. Effect of temperature on conversion in the thermal and catalytic decomposition of butane. 402

Figure 3-17. Effect of temperature on the product distribution in the catalytic and thermal decomposition. 403

Figure 3-18. Effect of temperature on conversion and products in the thermal and catalytic decomposition of butane. 404

Figure 3-19. Product distribution in catalytic decomposition of butane. 405

Figure 3-20. Hydrogen productivity with temperature in the thermal and catalytic decomposition of butane. 406

Figure 3-21. Distribution of the various products in catalytic decomposition of butane at 700 ℃. 407

Figure 3-22. Products Distribution by thermal and catalytic Decomposition of butane at 1100 ℃. 408

Figure 3-23. Effect of space velocity on butane conversion and product distribution in catalytic decomposition of butane. 409

Figure 3-24. Effect of temperature on the butane conversion in the catalytic decomposition of butane. 410

Figure 3-25. Arrhenius plot with the volume expansion in catalytic decomposition of butane. 411

Figure 3-26. Distribution of H₂ and CH₄ as the product in the catalytic decomposition of butane with temperature. 412

Figure 3-27. Carbon deposited reactor by thermal and catalytic decomposition of butane. 415

Figure 3-28. SEM images of the carbon black catalysts. 416

Figure 3-29. TEM images of the carbon black catalysts. 417

Figure 3-30. XRD analysis of fresh and used carbon black. 419

Figure 3-31. Products distribution for the mixing ratio of propane and butane in the catalytic decomposition at 700 ℃. 424

Figure 3-32. Comparison of hydrogen production for reactants. 425

Figure 3-33. Conversion of propane and butane by thermal and catalytic propane-butane mixed gas decomposition. 430

Figure 3-34. Distribution of product with temperature in the thermal and catalytic decomposition. 431

Figure 3-35. Hydrogen productivity with temperature in the thermal and catalytic decomposition of propane-butane mixed gas. 432

Figure 3-36. Hydrogen productivity with temperature in the catalytic decomposition of propane-butane mixed gas 433

Figure 3-37. Distribution of products by catalytic decomposition at 1000 ℃, 1100 ℃. 434

Figure 3-38. Catalytic decomposition for mixed propane-butane with reaction time of carbon black. 435

Figure 3-39. Arrhenius plot with the reaction temperature in catalytic decomposition of mixed propane-butane. 436

Figure 3-40. Effect of space velocity on the product distribution in the catalytic decomposition of propane-butane at 700 ℃. 437

Figure 3-41. TEM images of the carbon black catalysts. 440

Figure 3-42. Effect of temperature on the product distribution in the catalytic and thermal decomposition of LPG(1). 446

Figure 3-43. Effect of temperature on the product distribution in the catalytic and thermal decomposition of LPG(2). 447

Figure 3-44. Reactants decomposition with temperature in the thermal and catalytic decomposition of LPG. 448

Figure 3-45. Effect of reaction temperature for hydrogen production by PLG decomposition. 449

Figure 3-46. Hydrogen yield by the catalytic decomposition of LPG. 450

Figure 3-47. hydrogen production measured by mass spectrometer with respect to time in the thermal and catalytic decomposition of LPG. 451

Figure 3-48. Products Distribution by thermal and catalytic Decomposition of LPG at 1100 ℃. 452

Figure 3-49. Long-term test of LPG by carbon catalyst. 453

Figure 3-50. Effect of space velocity for LPG catalytic decomposition. 455

Figure 3-51. SEM images of the products carbon by thermal decomposition. 458

Figure 3-52. SEM images of the carbon black catalysts by catalytic decomposition. 459

Figure 3-53. TEM images of the carbon black catalysts. 461

Figure 3-54. Effect of hydrogen sulfide for methane catalytic decomposition. 465

Figure 3-55. EDX analysis of carbon black catalysts for hydrogen sulfide concentration in the methane decomposition. 466

Figure 3-56. Effect of hydrogen sulfide for propane catalytic decomposition. 467

Figure 3-57. Effect of hydrogen for methane catalytic decomposition. 471

Figure 3-58. Effect of carbon monoxide for methane catalytic decomposition. 472

Figure 3-59. Effect of carbon monoxide for propane catalytic decomposition. 473

Figure 4-1. XRD image of N330(P) blacks. 481

Figure 4-2. Pore distribution of N330(P) before and after reaction at 850℃, 1 Umf.(이미지참조) 482

Figure 4-3. Particle size distribution of N330(F) before and after reaction for 8 hr. 484

Figure 4-4. Pore distribution of N330(F) before and after reaction at 850℃, 4 Umf for 8 hr.(이미지참조) 485

Figure 4-5. SEM images of N330(F) before (a), and after reaction (b) at 850℃, 4Umf for 8 hr.(이미지참조) 486

Figure 4-6. Particle size distribution of HI-900L black 487

Figure 4-7. Pore distribution of HI-900L before and after reaction at 850 ℃, 1 Umf for 8 hr(이미지참조) 488

Figure 4-8. Summary of various properties of N330(F) and HI-900L black with methane decomposition. 489

Figure 4-9. SEM image of carbon nanofibers used as methane decomposition catalysts. 492

Figure 4-10. Methane conversion vs. time over different carbon catalysts. 493

Figure 4-11. SEM images of carbon nanofibers reacted at 900℃ for 5 hr. 496

Figure 4-12. Methane conversion vs. time over carbon nanofibers at different temperatures. 497

Figure 4-13. Conversion vs. time over N330 carbon black with different temperatures. 498

Figure 4-14. Methane conversion vs. time over carbon nanofibers without metal catalyst at 850℃ for 5 hr. 499

Figure 4-15. HR-TEM image of N330(F) after methane decomposition. 508

Figure 4-16. SEM images of (a) raw N330(F), (b) N330(F)-m with weight gain 9% and (c) N330(F)-p with weight gain 28% (×10,000). 509

Figure 4-17. SEM images of (a) raw N330(F), (b) N330(F)-m with weight gain 9% and (c) N330(F)-p with weight gain 28% (×300,000). 511

Figure 4-18. Mechanical properties of NBR rubber composites as a function of loading ratio (NBR filled by raw N330(F), N330(F)-m with weight gain 9% and... 513

Figure 4-19. Mechanical properties of NBR rubber composites as a function of loading ratio (NBR filled by raw N330(F), N330(F)-[m/p] with weight gain 5% and 15%). 515

Figure 4-20. Surface resistivity of NBR rubber composites versus loading ratio. 517

Figure 4-21. Mechanical properties of SBR rubber composites as a function of loading ratio(SBR filled by raw N330(F), N330(F)-m with weight gain 9% and N330(F)-p with weight gain 28%). 518

Figure 4-22. SEM images of raw N330(F) SBR composites with loading ratio (a) 20 phr and (b) 60 phr (×50,000). 520

Figure 4-23. SEM images of (a) raw N330(F), (b) N330(F)-B and (c) N330(F)-A (×10,000). 526

Figure 4-24. SEM images of (a) raw N330(F), (b) N330(F)-B and (c) N330(F)-A (×300,000). 528

Figure 4-25. Tensile strength and elongation versus loading ratio for composites filled by raw N330(F) and N330(F)-H. 530

Figure 4-26. Tensile strength and elongation versus loading ratio for composites filed by raw N330(F), N330(F)-B and N330(F)-A. 531

Figure 4-27. FT-IR graphs of N330(F) black before and after chemical modification. 532

Figure 4-28. SEM images of N330(F)-H black/SBR composites with loading ratio at (a) 20 phr and (b) 60 phr (×50,000). 533

Figure 4-39. Modulus at 300 % strain versus loading ratio of various carbon blacks. 534

Figure 4-30. Pore distribution of N330(F) before and after CO₂ activation at different conditions. 543

Figure 4-31. HR-TEM images of (a) N330(F)-CO₂-74% and (b) N330(F)-CO₂-57 % (×300,000) 544

Figure 4-32. SEM images of (a) raw N330(F) and (b) N330(F)-CO₂-74 % (×300,000) 545

Figure 4-33. ATR-FTIR spectra of N330(F) before and after CO₂ activation at different conditions. 546

Figure 4-34. Mechanical properties of SBR rubber composites as a function of loading ratio (SBR filled by raw N330(F) and N330(F)-CO₂... 547

Figure 4-35. Transmitted power density in EMI shielding as a function of frequency measured in the 0-6000 MHz range of (a) SBR rubber composites having activated carbon black with 74% yield at various... 548

Figure 4-36. Apparatus for measurement of resistivity. 553

Figure 4-37. SEM images of (a) raw N330(F), (b) N330(F)-HNO₃ and (c) N330(F)-NaOH (×100,000). 556

Figure 4-38. SEM images of (a) raw N330(F), (b) N330(F)-HNO₃ and (c) N330(F)-NaOH (×300,000). 557

Figure 4-39. ATR-FTIR spectra of N330(F) before and after chemical treatments. 558

Figure 4-40. SEM images of (a) raw N330(F), (b) N330(F)-800, and (c) N330(F)-1000, (d) N330(F)-1200 (×300,000). 561

Figure 4-41. ATR-FTIR spectra of N330(F) before and after heat treatments. 562

Figure 4-42. SEM images of (a) raw N330(F) and (b) N330(F)-CO₂-68% (×300,000). 565

Figure 4-43. ATR-FTIR spectra of N330(F) before and after CO₂ activation at different conditions. 566

Figure 4-44. EMI Shielding effectiveness of chemical treated carbon blacks filled PVA coating materials. 571

Figure 4-45. EMI Shielding effectiveness of heat treated carbon blacks filled PVA coating materials. 572

Figure 4-46. EMI Shielding effectiveness of carbon blacks filled PVA coating materials before and after CO₂ activation. 573

Figure 4-47. EMI Shielding effectiveness of chemical treated carbon blacks filled PVDF coating materials. 578

Figure 4-48. EMI Shielding effectiveness of heat treated carbon blacks filled PVDF coating materials. 579

Figure 4-49. EMI Shielding effectiveness of CO₂ activated carbon blacks filled PVDF coating materials. 580

Figure 4-50. EMI Shielding effectiveness of carbon blacks filled PVDF, PVP and PVDF/PVP mixtures coating materials. 583

Figure 5-1. 해석모델의 계산수행(node 수 15만개) 585

Figure 5-2. 반응기 유로 내부에서의 유동현상 시뮬레이션 결과 586

Figure 5-3. Double jacket external heating. 588

Figure 5-4. Pilot plant 반응기 내부 온도분포(CH₄ 입구-출구 중심부) 589

Figure 5-5. Pilot plant 압력분포(CH₄ 입구-출구 중심부) 590

Figure 5-6. Internal heating and external reheat. 593

Figure 5-7. Helical Type Fin을 적용한 고온 유동층 화학반응기의 시뮬레이션 결과 595

Figure 5-8. Helical Type Fin 방식 반응기의 온도분포(입구-출구 중심축) 596

Figure 5-9. Helical Type Fin 방식 반응기의 압력분포(입구-출구 중심축) 597

Figure 5-10. HRS 방식의 고온 유동층 화학반응기의 시뮬레이션 결과(온도,K) 599

Figure 5-11. 유동층 반응기 분산판 601

Figure 5-12. 반응기 내부유입 유량 및 압력 측정장치 602

Figure 5-13. 싸이클론 및 데이터 수집장치 603

Figure 5-14. 데이터 수집장치 604

초록보기

I. 제목

탄화수소 촉매분해에 의한 연속적 수소제조 기술 개발에 관한 연구

II. 연구개발의 목적 및 필요성

천연가스 및 LPG를 카본 촉매로 분해하여 대량의 수소를 연속적으로 생산하기 위해 유동층 시스템 기술을 개발하고자 한다. 이를 위하여서는 첫 번째로 메탄 및 LPG 분해에 적합한 촉매를 탐색하고, 반응특성을 파악하는 반응공학적 기초연구가 필요하다. 둘째로는 탄화수소의 촉매분해 반응이 연속적으로 이루어져야만 공정의 경제성을 확보하기 때문에 연속공정이 가능한 유동층 반응기의 개발이 요구된다. 것이다. 마지막으로 반응부산물로 생성되는 카본블랙을 고분자 메트릭스의 혼합 방법 및 후처리 방법에 하여 복합체를 제조하거나 물성에 따른 정전기 방지용, EMI 차폐용, 전자 부품 테스트 등의 고부가가치 제품으로의 활용방안을 연구하여 기존의 천연가스 수증기 개질 공정과의 경제성 비교에서 우위를 가질 수 있는 연구가 수행될 것이다.

또한 본 연구의 상업적 적용을 위하여 소규모 장치에서 얻어진 연구결과의 적용이 가장 적합한 수소 생산업체인 SPG 케미칼 공장에서 발생하는 부산물인 메탄을 분해하여 수소를 생산하는 pilot 규모의 유동층 반응 시스템을 제작, 운전하고, 아울러 메탄과 수소를 분리하는 5.0N㎥/hr규모의 PSA 장치와 연계하여 명실상부한 수소제조 공정의 전체 시스템을 운전하고, 조업조건을 확립하고, 상업적 규모의 생산 공정의 기본 자료를 얻고자 한다.

이 연구를 통한 결과는 탄화수소로부터 대량의 수소를 CO₂ - free 한 방법으로 생산하는 새로운 기술이 개발되고, 이 연구를 통하여 탄화수소의 촉매분해 원천기술을 획득할 것이다. 또한 반응부산물인 카본의 효과적인 활용방안 또한 모색될 것이다.

III. 연구개발의 내용 및 범위

- 메탄 및 LPG 분해에 적합한 촉매를 탐색하고, 다양한 촉매에 따른 반응 특성 자료 확보

- 카본블랙의 반응 활성점 특성 파악 및 반응 메카니즘 규명

- 연속적 반응을 위한 유동층 반응기의 설계 및 조업 조건에 따른 반응 특성 자료 확보

- 가압 반응기 제작 및 가압반응 특성 자료 확보

- 고온유동층 반응기의 열전달 특성 시뮬레이션 자료 확보

- 반응생성물로 생성되는 카본블랙의 기본 물성 측정 및 고분자 충진재로 활용연구

- pilot 규모의 실험설비 설계, 제작 및 운전 자료 확보

- 수소정제를 위한 PSA 설계 및 제작

- 반응시스템과 PSA 연계 실험을 통한 전체공정 운전 자료 확보

IV. 연구개발결과

- Rubber grade, pigment grade 및 conductive 카본블랙의 메탄 및 에탄 분해 촉매 특성 자료

- 메탄 및 에탄 혼합물에서의 반응 특성 자료

- 카본블랙의 반응 활성점 생성 메카니즘 규명

- 부탄 및 프로판의 카본블랙에 의한 분해 특성 자료

- 상업용 LPG의 카본블랙 촉매 분해 특성 자료

- Lab scale 유동층 반응기에서 조업조건에 따른 메탄의 반응특성 자료

- Lab scale 유동층 반응기에서 프로판 분해 특성 자료

- Lab scale 유동층 반응기에서 촉매의 장시간 반응 특성 자료

- Scale-up 유동층 반응기에서의 가압 반응 특성 자료

- Pilot 반응시스템 설계, 제작 및 운전 자료

- 수소정제를 위한 5.0 N㎥/hr PSA 설계, 제작

- Pilot 반응시스템과 PSA 연계 실험 자료

- Pilot 반응시스템 열전달 특성 simulation 자료

- 반응 생성물 카본블랙의 고무 충진재 활용 자료

- 반응생성물 카본블랙의 전자파 차페용 충진재 활용 자료

- 반응생성물 카본블랙의 표면처리 자료

V. 연구개발결과의 활용계획

본 연구의 핵심적인 결과는 탄화수소 (주로 천연가스와 LPG)를 CO₂의 발생이 없이 수소를 생산할 수 있는 적절한 촉매의 개발, 연속적 반응이 가능한 유동층 반응기의 개발, 생성된 수소를 정제하는 PSA 시스템의 적용, 그리고 반응생성물인 카본블랙의 재활용에 있다.

따라서 다양한 산업 분야에서 이러한 기술개발 결과를 활용할 수 있다고 할 수 있다. 우선 수소를 대량으로 필요로 하는 석유화학, 및 정유 공장에서 기존의 수증기 개질방식 대신에 이 기술을 활용하면 향후 문제가 되는 탄소세를 회피하면서 대량의 수소를 생산할 수 있다. 또한 제철공장에서 나오는 COG (Coke Oven Gas)에서 많이 포함된 메탄을 수소로 개질함으로서 CO₂ 문제 해결과 함께 연료의 up-grading도 가능하다. 또한 기존의 수증기 개질 반응에 비하여 공정이 간단하기 때문에 초기 투자비 및 운전비용이 적게 소요된다. 이 기술의 또 다른 응용분야는 매립지 가스의 활용이다. 국내의 매립지 가스에는 메탄이 많이 포함되어 있고, 또한 수증기 개질에 큰 문제가 되는 황화수소가 많기 때문에 이를 정제하는 비용이 많이 든다. 하지만 이 기술을 적용하면 사용되는 카본블랙 촉매가 촉매독으로 작용하는 황화수소에 영향을 받지 않기 때문에 고비용이 소요되는 황화가스 정제공정이 필요 없게 된다.

마지막으로 탄화수소 분해 과정에서 발생하는 카본블랙은 타이어 충진재로 바로 사용이 가능하며, 후처리를 통하여 특수용 카본블랙으로 적용할 수 있다. 때문에 타이어산업 및 전자재로 산업에도 활용이 가능하다.

[{value=MONO}]

  • 외부기관 원문 발행년도 [PublicationYear] :2009
  • 자료명/저자사항 [_TI] :탄화수소 촉매분해에 의한 연속적 수소제조 기술 개발에 관한 연구 / 산업자원부 [편]
  • 자료명/저자사항 [TI] :탄화수소 촉매분해에 의한 연속적 수소제조 기술 개발에 관한 연구 / 산업자원부 [편]
  • 발행사항 [PublicationStatement] :[과천] : 산업자원부, 2009
  • 청구기호 [CC] :
  • 자료실 [DataCenter] :전자자료
  • 형태사항 [Form] :xxvi, 619 p. : 삽화, 도표, 사진 ; 30 cm
  • 총서사항 [AseriesStatement] :
  • UCI [UCI] :G901:A-0006290332
  • 표준번호/부호 [ISSN] :
  • 제어번호 [CN] :MONO1201011822
  • 주기사항 [CycleMatter] :

    주관기관: 성균관대학교

    수행책임자: 한귀영

  • 원문유무 [ISDB] :1
  • 배가코드 [SL] :ER
  • 커버이미지 [COVER] :/thumb/MONO/1201/0118/MONO1201011822/
  • 목차 유형 [TOCPATH] :/data-db1-pdf/monoresh002/resh201006/MONO104008/MONO1201011822/MONO1201011822.toc
  • 초록 유형 [ABSPATH] :/data-db1-abs/monoabs001/2010/MONO104008/MONO1201011822.txt
  • 해제 유형 [EXPPATH] :
  • 동일저자자료 [SameAuth] :
  • 이용현황 [UsingStatus] :Y
  • 별치기호 구분 코드 [CCG] :
  • 원문유형1 [WT1] :P
  • 원문유형2 [WT2] :
  • 음성지원 [TT1] :0
  • 다운로드 가능여부 [DOWN] :N
  • 표지이미지 유무 [ISCOV] :0
  • 표지이미지 경로 [COVPATH] :
  • 저자프로필 유무 [ISPRO] :0
  • 인기도 [PPR] :4
  • 관련자료 [KRMLINK] :
  • 발행지 [PP] :[과천]
  • 발행자 [Publisher] :산업자원부
  • 모체자료 [PregnantMotherData] :
  • 발행년 [PD1] :2009
  • 판사항 [EditionStatement] :
  • 부록/보유자료 [SupplementAndHoldingMaterials] :
  • 이용가능한 다른 형태자료 [OtherData] :
  • 닫기 이전 다음
    닫기
    이전 다음