본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (1)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
하이브리드 및 유로-6 소형 경유차의 실제도로 주행 배출가스 평가 [전자자료] / 국립환경과학원 인기도
발행사항
인천 : 국립환경과학원, 2015
청구기호
전자형태로만 열람 가능함
자료실
전자자료
내용구분
연구자료 : 통계
출처
외부기관 원문
총서사항
NIER-SP ; 2015-055
면수
109
제어번호
MONO1201551568
주기사항
주관연구기관: 한국교통대학교, 한양대학교
연구책임자: 전문수, 박성욱
원문
미리보기

목차보기더보기

표제지

목차

요약문 4

Ⅰ. 서론 12

1.1. 연구배경 및 필요성 12

1.2. 연구목적 및 내용 17

Ⅱ. 연구 내용 및 방법 19

2.1. 하이브리드 및 유로-6. 경유차 기술 특성 19

2.2. 시험자동차 23

2.3. 주행경로 설정 24

2.4. 이동식 배출가스 시험장치(PEMS) 26

2.5. PEMS 측정데이터 신뢰성 29

2.6. 실제도로 배출가스 측정데이터 분석방법 30

2.6.1. 이동평균구간(MAW, Moving Averaging Windows) 분석방법 30

2.6.2. 가중 평균 배출량(Weighted Emission) 분석방법 33

2.7. 하이브리드 자동차용 동력시스템 모델 개발 35

2.7.1. 모델 구성에 필요한 input data 39

2.7.2. AVL CRUISE 내 Parallel Hybrid Model 모델 예시 분석 42

2.7.3. 병렬형 하이브리드 차량 동력흐름 분석 44

2.7.4. 차량동역학 기반 Parallel Hybrid 초기 개발 모델 45

2.7.5. 차량동역학 기반 Parallel Hybrid 개발 모델 - Fuzzy logic 기반 개선모델 47

2.8. 휘발유 및 경유차에 대한 기존 모델 개발 57

2.8.1. 고속 영역에서의 lock-up clutch 적용 기술 57

2.8.2. WLTP 제안 연비 보정법 적용을 통한 연비 편차 저감 기술 분석 58

2.9. 주행모드 및 실제 도로 주행 조건에서의 대기오염물질 및 CO₂ 예측 65

Ⅲ. 시험 결과 및 고찰 70

3.1. 차대동력계 시험 결과 70

3.2. 이동평균구간(Moving Averaging Windows) 분석결과 71

3.3. 가중평균 배출량(Weighted Emission Method) 분석결과 77

3.4. RDE-LDV 데이터 분석방법 비교 81

3.5. 주위온도 변화에 따른 실제도로 NOx 배출량 83

3.6. 동력시스템 시뮬레이션 결과 84

3.7. 휘발유 및 경유차에 대한 기존 모델 연구 결과 92

3.8. 주행모드 및 실제도로 주행 조건에서의 대기오염물질 및 CO₂ 예측 연구결과 101

Ⅳ. 결론 105

Ⅴ. 참고문헌 107

Table 1-1. Korean emission standards for light duty vehicles 12

Table 2-1. Specification of test vehicles 23

Table 2-2. Description on PEMS test routes 24

Table 2-3. Specifications of PEMS (Model OBS-2000) 27

Table 2-4. Specifications of PEMS (Model ECO-STAR) 28

Table 2-5. Determining of engine generation power based on Fuzzy logic control 49

Table 2-6. Vehicle specification 59

Table 2-7. Information of NIER and HWFET driving moed 60

Table 2-8. Power system model developed vehicle list of last year and this year 66

Table 2-9. Creating a virtual vehicle dynamics model - Appling SULEV and EURO-6 vehicle emission map data 69

Table 3-1. NOx emissions averaged vehicle speed distribution (Combined 1 route) 72

Table 3-2. NOx emissions averaged vehicle speed distribution (Combined 2 route) 72

Table 3-3. 50% C.P and 90% C.P (MAW) for NOx emissions (Combined 1 route) 74

Table 3-4. 50% C.P and 90% C.P (MAW) for NOx emissions (Combined 2 route) 74

Table 3-5. 50% C.P and 90% C.P (MAW) for RDE emissions (Combined 2 test route) 76

Table 3-6. Weighted emission and 50% C.P for NOx emission (Combined 1 route) 82

Table 3-7. Weighted emission and 50% C.P for NOx emission (Combined 2 route) 83

Table 3-8. Verifying fuel economy prediction accuracy of advanced parallel hybrid model 87

Table 3-9. Advancing fuel economy prediction accuracy by applying lock-up clutch characteristics and effective rolling radius 93

Table 3-10. Simulation cases: generating a vehicle driving patterns in allowable limits error range (+/-3.2km/h) 98

Table 3-11. Simulation cases: generating a inaccurate road load simulation conditions 99

Fig. 1-1. Share of NOx by 2012(Korea) and by 2013(Europe) 13

Fig. 1-2. Atmospheric environment, Seoul weather information by year, 2014 13

Fig. 1-3. Recent Trends in Roadside NOx Concentration in UK (2010) 14

Fig. 1-4. Real-driving NOx emissions for light-duty vehicles (Europe) 15

Fig. 1-5. Real-driving NOx emissions for Korean light-duty vehicles 15

Fig. 1-6. Analysis of Vehicle Simulation 16

Fig. 1-7. Structure to conduct studies 18

Fig. 2-1. stage operating states of hybrid vehicles 19

Fig. 2-2. Functional classification of the hybrid vehicles 20

Fig. 2-3. Functional Principle of Urea-SCR 21

Fig. 2-4. Functional Principle of LNT 22

Fig. 2-5. NOx storage reduction (LNT) aftertreatment reaction 22

Fig. 2-6. PEMS test routes for real driving emission measurement 24

Fig. 2-7. Relative positive acceleration of short trip in real-road PEMS test routes, NEDC, CVS-75 and WLTC 25

Fig. 2-8. Typical speed distributions of PEMS test routes 26

Fig. 2-9. Schematics of PEMS for real driving emission measurement 27

Fig. 2-10. Photographs of PEMS installation to test vehicles 28

Fig. 2-11. Correlation of emission results between PEMS and CVS equipment 29

Fig. 2-12. Comparison of real time NOx and CO2 emission rate between PEMS and CVS 30

Fig. 2-13. Concept of moving averaging window method 31

Fig. 2-14. Example of CO2 characteristics curve with vehicle speed for moving averaging window analysis 32

Fig. 2-15. Example of cumulative NOx emissions expressed as deviation ratios for 50% C.P and 90% C.P during normal driving conditions (MAW) 33

Fig. 2-16. Concept of weighted emissions method (power bin) proposed by EU 34

Fig. 2-17. Normalization process of the vehicle power pattern(Pe) into a normalized power(Pnorm) frequency 34

Fig. 2-18. Normalized standard power frequencies proposed by EC-JRC 35

Fig. 2-19. AVL CRUISE program GUI 36

Fig. 2-20. Main forces acting on vehicle 36

Fig. 2-21. AVL CRUISE program calculation process 38

Fig. 2-22. Structure of a parallel-type hybrid vehicle 39

Fig. 2-23. Example of fuel consuption map & THC emission map data 40

Fig. 2-24. Example of engine maximum torque curve characteristic data 40

Fig. 2-25. Principles of Smallest error square method 40

Fig. 2-26. Example of CVT and gear box data 42

Fig. 2-27. Example of AVL CRUISE Parallel Hybrid vehicle model configuration 43

Fig. 2-28. Main data connection of Hybrid vehicle model 43

Fig. 2-29. Power train structure of parallel Hybrid vehicle model 44

Fig. 2-30. Operating conditions of parallel hybrid vehicle 45

Fig. 2-31. The initial development model of parallel hybrid vehicle 46

Fig. 2-32. Fuzzy logic based Parallel Hybrid vehicle model calculation flow 48

Fig. 2-33. Example of optimum engine and motor operation condition region 49

Fig. 2-34. Determination of vehicle driving force condition based on Fuzzy logic (Pdrive) 50

Fig. 2-35. Determination of battery SOC condition based on Fuzzy logic 51

Fig. 2-36. Determination of motor speed condition based on Fuzzy logic 52

Fig. 2-37. Determining battery charging quantity by using extra engine power 53

Fig. 2-38. Main calculation modules composing parallel hybrid model 54

Fig. 2-39. Extra engine power for specific driving point 55

Fig. 2-40. Generation of matlab simulink DLL file 56

Fig. 2-41. Application torque converter lock-up clutch characteristic data 57

Fig. 2-42. Expansion of lock-up clutch application area [3] 58

Fig. 2-43. Velocity profile of NIER and HWFET driving moed 59

Fig. 2-44. Velocity deviation within speed tolerance (+/-3.2km/h) 61

Fig. 2-45. Actual road load conditions of test vehicles and generation of inaccurate road load condition 63

Fig. 2-46. Velocity profile of WLTP mode 64

Fig. 2-47. Willans line Generation by using WLTP mode test data 65

Fig. 2-48. Analysis of average emission results at various engine operation condition 66

Fig. 2-49. NOx emission map of gasoline and diesel vehicle 67

Fig. 2-50. Velocity profile of with 6 types of real driving conditions 68

Fig. 3-1. Chassis dynamometer test results with NEDC, WLTC and CVS-75 driving cycles 70

Fig. 3-2. on-road NOx emissions averaged vehicle speed for combined 1 and combined 2 test routes 71

Fig. 3-3. on-road NOx emissions and deviation ratio with PEMS test routes 73

Fig. 3-4. on-road NOx emissions and cumulative frequency of NOx emissions expressed as deviation ratio on combined 1 and combined 2 test routes 73

Fig. 3-5. on-road RDE emissions and cumulative frequency expressed as deviation ratio on combined 2 test routes 75

Fig. 3-6. Characteristics of Prius-pi(PHEV) MAW analysis 76

Fig. 3-7. Normalization and denormalization of power frequencies with Euro-6 vehicle 77

Fig. 3-8. Weighted NOx emission rate as normalized power bin and target power bin on Combined 1 route 78

Fig. 3-9. Weighted NOx emission rate as normalized power bin and target power bin on Combined 2 route 79

Fig. 3-10. Weighted RDE emission rate as normalized power bin and target power bin on Combined 1 test route 80

Fig. 3-11. Willans line calculated test at a diesel vehicles 81

Fig. 3-12. Comparison of weighted emissions(power bin) results with 50% C.P(MAW) results on combined 1 and combined 2 test routes 82

Fig. 3-13. On-road NOx emissions with ambient temp.(Combined 1 route) 84

Fig. 3-14. Verifying prediction accuracy of engine operating points by using initial hybrid model simulation results (NIER07 mode) 84

Fig. 3-15. Predictions of vehicle driving conditions and battery SOC by using initial hybrid model simulation (NIER07 mode) 85

Fig. 3-16. Verifying prediction accuracy of driving point and SOC by using Fuzzy logic based hybrid model simulation (advanced) 86

Fig. 3-17. hold on control logic generation based on Matlab simulink program 88

Fig. 3-18. Application of hold on control logic 89

Fig. 3-19. Advancing prediction accuracy of vehicle operating condition applying hold on 89

Fig. 3-20. Example of power flow at regenerative braking condition 90

Fig. 3-21. Example of power flow at low load condition (only using motor) 91

Fig. 3-22. Example of power flow at high load condition 91

Fig. 3-23. Gear box shifting map - lock-up clutch area 92

Fig. 3-24. Advancing prediction accuracy of engine operating conditions by applying lock-up clutch characteristics and effective rolling radius 93

Fig. 3-25. Verifying prediction accuracy of road load force acting on vehicle 94

Fig. 3-26. Verifying prediction accuracy of engine operating conditions 95

Fig. 3-27. Verifying prediction accuracy of engine operating conditions 96

FIg. 3-28. CO₂ prediction results - deviation in target speed and actual vehicle test speed 97

Fig. 3-29. Detailed vehicle performance characteristic prediction results at NIER03 and 14 mode - Diesel1 99

Fig. 3-30. CO₂ prediction results - deviation in target road condition and actual road load condition 100

Fig. 3-31. Generating a NOx emission map by using REAP program and chassis dynamometer test data 102

Fig. 3-32. CO₂ and NOx prediction results based on real driving condition 103

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기