본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
CO2 free 친환경 냉온열전력 삼중에너지 생산 시스템 공동 개발 [전자자료] / 국토교통과학기술진흥원 인기도
발행사항
안양 : 국토교통과학기술진흥원, 2018
청구기호
전자형태로만 열람 가능함
자료실
전자자료
형태사항
1 온라인 자료 : PDF
제어번호
MONO1201930939
주기사항
주관연구기관: 한국에너지기술연구원
주관연구기관책임자: 이의준
원문

목차보기더보기

[표지]

목차

CO2 free 친환경 냉온열전력 삼중에너지 생산 시스템 공동 개발 1

제출문 2

보고서 요약서 3

국문 요약문 4

영문 요약문 5

목차 6

제1장 과제의 개요 7

제1절 연구배경 7

제2절 개발기술의 중요성 및 필요성 9

제2장 국내외 기술 개발 현황 12

제1절 태양열광(PVT) 기술소개 및 선행연구 분석 12

제2절 공기식 지중열교환기(GAHX) 기술소개 및 선행연구 분석[원문불량;p.14] 19

제3장 연구 수행 내용 및 결과 37

제1절 태양열광(PVT) 단위모듈 개발 37

제2절 공기식 지중열교환기(GAHX) 단위모듈 개발[원문불량;p.56-57,75-76] 53

제3절 9kWt급 삼중에너지 생산 시스템 실증단지 개발 84

제4절 9kWt급 삼중에너지 생산 시스템 실증단지 구축 109

제5절 9kWt급 삼중에너지 생산 시스템 실험 125

제6절 삼중에너지 생산 시스템 AI(ANN, FL) 제어 기법[원문불량;p.136,138] 139

제7절 삼중에너지 생산 시스템 경제성 및 온실가스 저감 평가 155

제8절 소결 179

제4장 연구목표 달성도 및 성과 181

제5장 연구개발 성과 활용 계획[원문불량;p.181] 183

제6장 연구개발과제 수행에 따른 연구실 안전 조치 이행 실적 188

제7장 연구개발과제의 대표적 연구 실적 190

[참고문헌] 191

CO₂ Free Trigeneration Technology 193

COPYRIGHT 194

Disclaimer 194

Acknowledgments 195

Acronyms 196

Executive Summary 198

Contents 209

1. Introduction 217

1.1. Microgeneration and Trigeneration Systems 217

1.2. Objectives 219

2. Case Studies and Analysis Methodologies 221

2.1. Case Studies 221

2.2. Testing of Trigeneration System at Twin-Test-Cell 223

2.3. Simulation and Analysis Methodology 224

2.4. Simulation Assumptions and Control Strategies 226

3. Results and Discussions: System Design and Performance Potential Evaluation 228

3.1. Energy Analysis Results 228

3.2. Emission Analysis Results 235

3.3. Cost Analysis Results 237

4. Results and Discussions: Model Validation and System Field-Assessment at Twin-Test-Cell 243

4.1. Validation of TRNSYS Component Models 243

4.2. Assessment of Twin-Test-Cell Experiment Setup 255

4.3. Development of Twin-Test-Cell Testing Scenarios and Schedule 255

4.4. Experimental Test and Simulation of Trigeneration System and Heat Pump System at TTC 257

4.5. Evaluation of TTC Trigeneration System Performance with Respect to Conventional Boiler-Chiller System 261

5. Application of Advanced Control Strategies and System Optimization 265

5.1. Comparative Study of Fuzzy Logic Based Controllers 265

5.2. Optimization Trigeneration System Study 272

6. Summary and Conclusions 285

7. General Guidelines and Recommendations 291

8. Further Work 293

9. References 294

Appendices 300

Appendix A. Twin-Test-Cell Facility 300

Appendix B. TRNSYS Component Models 304

Appendix C. Simulation Assumptions and Thermal/Electrical Load Profiles 313

Appendix D. Electric wiring for Fuel cell micro-generation system tested at CCHT 321

Appendix E. Utility Rates 322

References for Appendix 324

[Back Cover] 325

Table 1. Summary of modeling cases 222

Table 2. Control strategies for boiler-chiller system (Case 1) 226

Table 3. Control strategies for GAHX-PVT-AWHP trigeneration system (Case 2) 227

Table 4. Breakdown of annual energy consumption/production for cases 1-2 in Incheon and Ottawa 230

Table 5. System performance (COP) for cases 1 and 2 in Incheon and Ottawa 233

Table 6. Breakdown of annual electricity generation and supply of GAHX-PVT-AWHP trigeneration... 235

Table 7. CO2eq emission factors used analyses for Incheon and Ottawa cases(이미지참조) 235

Table 8. Natural gas prices in Ottawa, Canada 237

Table 9. Ontario electricity time-of-use price periods and respective rates 238

Table 10. Electricity prices used in cost analyses for Ottawa cases 238

Table 11. Natural gas prices in Korea 238

Table 12. Electricity prices in Korea 239

Table 13. RMSE values of the validated TRNSYS PVT model 246

Table 14. RMSE values of the validated TRNSYS GAHX model 249

Table 15. Modified rated cooling capacity and power consumption for TRNSYS AWHP models 250

Table 16. Modified rated heating capacity and power consumption for TRNSYS AWHP models 253

Table 17. TTC testing scenarios and schedules for achieving different demand conditions 256

Table 18. Simulation cases for evaluating impact of reneweable components on energy performance 257

Table 19. Comparison of TTC and IWEC weather data 258

Table 20. CO₂ emission factors used analyses for Incheon and Ottawa cases 263

Table 21. Linguistic description of fuzzy logic system inputs and output for AWHP system 266

Table 22. Fuzzy inference system operators used in the study 267

Table 23. If-Then rules for AWHP operational state for FL controller with one input (FL-1) 267

Table 24. If-Then rules for AWHP operational state for FL controller with two inputs (FL-2) 268

Table 25. AWHP operational stage 270

Table 26. Electric energy savings achieved by FL controllers in different time-periods compared to an... 271

Table 27. Economic and emissions input parameters 279

Table 28. Optimization variables and boundaries 279

Table 29. Breakdown of Annual Optimum Cost for Trigeneration System 282

Table A1. Specification of Twin-Test-Cell facility located at KIER 301

Table A2. Performance Data for Air-to-Water Heat Pump 301

Table A3. PVT system performance 303

Table A4. Rehau Ecoair system performance 303

Table B1. Boiler efficiency at partial load 305

Table B2. Chiller capacity ratio and power ratio 306

Table B3. Chiller performance data at partial load 307

Table B4. Control strategies for boiler-chiller system (Case 1) 310

Table B5. Control strategies for GAHX-PVT-AWHP trigeneration system (Case 2) 311

Table B6. TRNSYS model types used in present simulations 311

Table C1. House building specification 314

Table C2. Infiltration rate of house and office 316

Table C3. Simulation period and weather data 317

Table C4. Main input parameters for Case 1 317

Table C5. Main input parameters for case 2 for single house 319

Table E1. Ontario electricity time-of-use price periods and respective rates 323

Table E2. Electricity prices used in cost analyses 323

Table E3. Natural gas prices used in Ottawa, Canada 323

Fig. 1. Schematic diagram of house with conventional system (Case 1) 222

Fig. 2. Schematic diagram of GAHX-PVT-AWHP trigeneration system (Case 2) 222

Fig. 3. Schematic layout of Twin-Test-Cell at KIER 223

Fig. 4. Schematic of TTC experimental setup 224

Fig. 5. Annual space heating, space cooling and DHW load intensity for cases 1 and 2 in Incheon and... 228

Fig. 6. Annual energy consumption/production intensity for cases 1 and 2 in Incheon and Ottawa 229

Fig. 7. Annual primary energy consumption intensity for cases 1 and 2 in Incheon and Ottawa 231

Fig. 8. Distribution of primary energy consumption by components for cases 1-2 in Incheon and... 232

Fig. 9. Overall primary energy saving of GAHX-PVT-AWHP trigeneration system in Incheon and... 233

Fig. 10. Sample PVT electricity production and building HVAC electric load for GAHX-PVT-AWHP... 234

Fig. 11. Annual CO2 emission intensity of cases 1-2 in Incheon and Ottawa 236

Fig. 12. Annual CO2 emission reduction of GAHX-PVT-AWHP trigeneration system in Incheon and... 236

Fig. 13. Annual operation cost intensity (CAD $/m2) for cases 1-2 in Incheon and Ottawa 239

Fig. 14. Annual operational cost comparisons of GAHX-PVT-AWHP trigeneration system to... 240

Fig. 15. Measured air inlet/outlet temperature, flowrate, ambient temperature and calculated... 244

Fig. 16. Measured solar irradiance and PVT electric intensity and calculated thermal intensity 244

Fig. 17. PVT electric and thermal efficiencies derived from experimental data in time-series 245

Fig. 18. Comparison of predicted and measured PVT air outlet temperature 245

Fig. 19. Comparison of predicted and measured PVT electric power 246

Fig. 20. Comparison of predicted and measured PVT thermal power 246

Fig. 21. Schematic of testing layout for ground-to-air heat exchangers 247

Fig. 22. Comparison of predicted and measured air outlet temperature from a ground-to-air heat... 248

Fig. 23. Comparison of predicted and measured air outlet temperature from a ground-to-air heat... 249

Fig. 24. Comparison of AWHP cooling capacity between TRNSYS model and experimental testing 250

Fig. 25. Comparison of AWHP power consumption in cooling mode between TRNSYS model and... 251

Fig. 26. Comparison of AWHP COP in cooling mode between TRNSYS model and experimental testing 251

Fig. 27. Measured AWHP temperatures, flow rates, power consumption and heating capacity 252

Fig. 28. Comparison of AWHP cooling capacity between TRNSYS model and experimental testing 253

Fig. 29. Comparison of AWHP power consumption in cooling mode between TRNSYS model and... 254

Fig. 30. Comparison of AWHP COP in cooling mode between TRNSYS model and experimental testing 254

Fig. 31. Thermal load of Target and Reference cells under different testing periods 258

Fig. 32. Thermal output from PVT and GAHX under different testing periods 259

Fig. 33. Electric and thermal efficiency of PVT under different testing periods 259

Fig. 34. Breakdown of system electricity consumption of trigeneration system and HP system under... 260

Fig. 35. Net electricity consumption under different testing conditions 260

Fig. 36. Electricity savings under different testing conditions 261

Fig. 37. Energy consumption of the conventional and renewable trigeneration system under different... 262

Fig. 38. Comparison of primary energy consumption of the conventional and renewable trigeneration... 263

Fig. 39. Comparison of CO2eq emission of the conventional and renewable trigeneration system under...(이미지참조) 264

Fig. 40. Membership functions of room temperature difference, ambient (outside) temperature and... 267

Fig. 41. Control surface for FL controller with one input in heating and cooling modes 268

Fig. 42. Control surface for FL controller with one input in heating and cooling modes 269

Fig. 43. Comparison of electric energy consumption of AWHP system with On-Off and fuzzy logic... 270

Fig. 44. Comparison of operational time and stage of AWHP system with On-Off and fuzzy logic... 271

Fig. 45. Flowchart system design optimization and simulation for Trigeneration System 276

Fig. 46. Outlet air temperature from GAHX at different outside temperature and GAHX length 277

Fig. 47. AWHP heat delivery to the load at different outside temperature and inlet water temperature... 278

Fig. 48. AWHP COP at different outside temperature and inlet water temperature in winter and... 278

Fig. 49. Hourly heating/cooling demand load and AWHP heat delivery for hybrid trigeneration system... 280

Fig. 50. Hourly HVAC and non-HVAC energy consumption, Energy production, CO₂ emissions and solar... 281

Fig. 51. Daily average energy consumption, production, and CO₂ emissions from hybrid trigeneration... 281

Fig. 52. Annual thermal demand loads and energy delivery for hybrid trigeneration system under... 282

Fig. 53. Breakdown of annual thermal energy delivery of the hybrid trigeneration system under... 283

Fig. 54. Annual electrical energy of the hybrid trigeneration system under optimum design conditions... 284

Fig. 55. Hybrid trigeneration system performance 284

Fig. A1. Twin-Test-Cell Layout 300

Fig. A2. Rehau Ecoair Ground loop system in summer and winter seasons 302

Fig. B1. Boiler with different efficiency characteristics 304

Fig. B2. Chiller performance at partial load 305

Fig. B3. Room thermostat set-points for house and office 309

Fig. C1. Internal gains of residential and office buildings 314

Fig. C2. Internal moisture gain of residential and office buildings 315

Fig. C3. Daily domestic hot water load profiles for house and office 315

Fig. D1. Schematic Diagram of the Upgraded Electric Wiring and Metering in the CCHT Houses 321

Fig. E1. Ontario Electricity Time-of Used price Periods 322

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기