권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
영문목차
Contents
Preface ix
1 Description of Motivating Examples 1
2 Regression Models 15
3 Methods of Bayesian Inference 39
4 Worked Examples using Complete Data 72
5 Missing Data Mechanisms and Longitudinal Data 85
6 Inference about Full-Data Parameters under Ignorability 115
7 Case Studies: Ignorable Missingness 145
8 Models for Handling Nonignorable Missingness 165
9 Informative Priors and Sensitivity Analysis 216
10 Case Studies: Nonignorable Missingness 233
Distributions 268
Bibliography 271
Author Index 292
Index 298
등록번호 | 청구기호 | 권별정보 | 자료실 | 이용여부 |
---|---|---|---|---|
0001447045 | 519.5 -A9-10 | 서울관 서고(열람신청 후 1층 대출대) | 이용가능 |
The book first reviews modern approaches to formulate and interpret regression models for longitudinal data. It then discusses key ideas in Bayesian inference, including specifying prior distributions, computing posterior distribution, and assessing model fit. The book carefully describes the assumptions needed to make inferences about a full-data distribution from incompletely observed data. For settings with ignorable dropout, it emphasizes the importance of covariance models for inference about the mean while for nonignorable dropout, the book studies a variety of models in detail. It concludes with three case studies that highlight important features of the Bayesian approach for handling nonignorable missingness.
With suggestions for further reading at the end of most chapters as well as many applications to the health sciences, this resource offers a unified Bayesian approach to handle missing data in longitudinal studies.
This book provides a unified Bayesian approach to handle missing data in longitudinal studies. It contains examples and case studies on schizophrenia, aging, HIV, and smoking cessation. The authors describe assumptions that include MAR and ignorability, demonstrate the importance of covariance modeling with incomplete data, and cover mixture and selection models for nonignorable missingness. They also present methods for representing untestable assumptions using prior distributions. Several analyses deal with nonignorable missingness as well as illustrate the models and methods. Many analyses are implemented using WinBUGS, with the code provided on a supplementary web page.
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.