본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

이용현황보기

Density estimation for statistics and data analysis 이용현황 표 - 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0001747677 519.5 -A12-10 서울관 서고(열람신청 후 1층 대출대) 이용가능

출판사 책소개

알라딘제공
Density Estimation for Statistics and Data Analysis presents a practical, accessible account of density estimation with the goal of facilitating broader practical application of density estimation and encouraging further research. The author discusses several applications, including the analysis and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates. The book includes a general survey of methods available for density estimation and discusses the kernel method, adaptive methods, and methods based on penalized likelihood. More the 50 graphs and figures complement the text.

Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician.

The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text.

Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.