This study was carried out to measure droplet size and to predict drift distances using DRIFTSIM model under various nozzle and spraying pressure conditions. The XR nozzle produced approximately 50% of droplets small enough to drift significantly, with increased drift distances when the spraying height was reduced. The DG nozzle generated relatively larger droplets and exhibited shorter drift distances. The TP nozzle showed similar characteristics to the XR nozzle but had reduced drift distances when the height was lowered. The AI nozzle primarily produced larger droplets, making it the most effective in minimizing drift. This study confirms the impact of spraying pressure and height on droplet size and drift distance. The XR and TP nozzles generated a higher proportion of small droplets, increasing drift potential, while the AI nozzle was the most effective in reducing drift. The DG nozzle was identified as the most suitable nozzle, considering both drift reduction and crop surface adhesion efficiency.
Therefore, adjusting spraying pressure and height can significantly minimize drift-related issues.