List of FiguresList of TablesForewordPrefaceAuthor BiosContributorsSection I Fundamental TheoriesChapter 1 Smart Energy Systems1.1 Introduction1.2 Renewable Energy Sources1.3 Energy Storage1.4 Smart Metering1.5 Demand-Side Management1.6 Home Energy Management System1.7 Chapter SummaryBIBLIOGRAPHYChapter 2 Theories of Artificial Intelligence2.1 Introduction2.2 Optimisation2.3 Game Theory2.4 Support Vector Machine2.5 Dimensionality Reduction2.5.1 Probabilistic Fundamental2.5.2 Principal Component Analysis2.5.3 Maximum Projection Variance2.5.4 Minimum Cost of Reconstruction2.6 Expectation Maximisation2.6.1 Convergence of Expectation Maximisation Algorithm2.6.2 Kullback–Leibler Divergence2.6.3 Jensen Inequality2.6.4 Generalised Expectation Maximisation2.7 Gaussian Mixture Model2.7.1 Model Introduction2.7.2 Solution of Gaussian Mixture Model2.7.2.1 E-Step2.7.2.2 M-Step2.8 Variational Inference2.9 Hidden Markov Model2.9.1 Evaluation2.9.2 Learning2.9.3 Decoding2.10 Feedforward Neural Networks2.10.1 Recurrent Neural Network2.10.2 Long Short-Term Memory2.10.3 Convolutional Neural Network2.11 Reinforcement Learning2.12 Chapter SummaryBIBLIOGRAPHYChapter 3 Theories of Blockchain Technologies3.1 An Overview of Blockchain3.2 Blockchain-Based Cryptocurrency3.2.1 Cryptography Theory3.2.1.1 Cryptographic Hash Function3.2.1.2 Signature3.2.2 Data Structure3.2.2.1 Chaining Features3.2.2.2 Merkle Tree3.2.3 Consensus3.2.3.1 Unspent Transaction Output3.2.3.2 Proof-of-Work3.2.4 Block Structure3.2.5 Difficulty3.2.5.1 Reasons for Adjusting Difficulty3.2.5.2 Mechanism for Adjusting Difficulty3.2.6 Node Types3.2.7 Networks3.3 Blockchain-Based Smart Contracts3.3.1 Account3.3.2 Data Structure3.3.2.1 State Tree3.3.2.2 Transaction Tree3.3.2.3 Receipt Tree3.3.3 Smart Contracts3.3.3.1 Input and Output3.3.3.2 Control Structures3.3.3.3 Creating New Contracts3.3.3.4 Conditions and Errors3.3.3.5 Deployment of Smart Contracts3.4 Chapter SummaryBIBLIOGRAPHYSection II Applications in Smart Energy SystemsChapter 4 Reforms in Energy Systems: Prosumers Era and Future Low-Carbon Energy Systems4.1 Key Stakeholders in GB Energy System4.1.1 Power System Operator4.1.2 Transmission System Operator4.1.3 Distribution Network Operator4.1.4 Energy Suppliers4.1.5 Policy Maker4.1.6 Regulators4.1.7 Consumers4.2 The Emerging Role of Prosumers4.3 Market Structures for Prosumer Networks4.3.1 Peer-to-Peer Trading Markets4.3.2 Intermediary-Based Trading Markets4.3.3 Microgrid-Based Trading Markets4.4 Regulatory Supports4.4.1 Regulatory Barriers and Principles for Prosumers Engagement4.4.2 Policy Supports for Net Zero Transition4.4.2.1 Carbon Pricing Scheme4.4.2.2 Contract for Difference Auction4.4.2.3 Capacity Auction4.4.3 Regulation for Electricity Trading and Balance: A Case in the GB Electricity Market4.4.3.1 Settlement4.4.3.2 Imbalance Management4.5 Technical Challenges of Future Low-Inertia Power Systems4.5.1 Frequency and Inertia4.5.2 Challenges of Low-Inertia Power Systems4.5.3 Solutions for Low-Inertia Power Systems4.6 Chapter SummaryBIBLIOGRAPHYChapter 5 Application of Artificial Intelligence for Energy Systems5.1 Introduction5.2 Optimisation5.3 Game Theory5.4 Machine Learning5.5 Stochastic Approaches5.6 Agent-Based System5.7 Research Example 1: Multi-Agent Model for Energy System Scheduling5.7.1 Introduction5.7.2 Framework of Multi-Agent System5.7.2.1 Agents Design5.7.2.2 Agents Coordination5.7.3 Problem Formulation5.7.3.1 Demand-Side Management5.7.3.2 Generation Scheduling5.7.4 Case Studies5.7.5 Research Summary5.8 Research Example 2: Artificial Intelligence for Pricing Patterns Recognition5.8.1 Introduction5.8.2 Problem Formulation5.8.2.1 Scenarios Analysis5.8.2.2 Scheduling Strategy5.8.3 Pricing Pattern Recognition5.8.4 Case Studies5.8.5 Research Summary5.9 Example Research 3: Reinforcement Learning for Low-Carbon Energy Hub Scheduling5.9.1 Introduction5.9.2 System Model5.9.2.1 Energy Hub Components5.9.2.2 Technical Constraints5.9.2.3 Carbon Emissions Tracing5.9.3 Proposed Algorithm5.9.3.1 Conditional Random Field for Elasticity Modelling5.9.3.2 Reinforcement Learning5.9.4 Numerical Results5.9.4.1 Simulator5.9.4.2 Evaluation of Model Performance5.9.4.3 Evaluation of Cost and Carbon Reduction5.9.5 Research Summary5.10 Example Research 4: Artificial Intelligence for Energy Systems Scheduling under Uncertainties5.10.1 Introduction5.10.2 Data-Driven Approach in Addressing Uncertainties5.10.2.1 Ideal Energy Dispatching5.10.2.2 Practical Energy Dispatching5.10.2.3 A Brief Revisit on DNN5.10.2.4 Optimal Dispatching Model via DNN5.10.2.5 Day-Ahead Scheduling Model via DNN5.10.2.6 Addressing Multiple Uncertainties via Deep Learning5.10.3 Multi-Vector Energy System Implementations5.10.3.1 A Case Study of Settlement Performance5.10.3.2 A Case Study of 2017 UK Dataset5.10.3.3 A Case Study of 2018 UK DatasetBIBLIOGRAPHYChapter 6 Implementation of Blockchain in Local Energy Markets6.1 Introduction6.2 Blockchain Enabling Decentralised Energy Markets6.2.1 Peer-to-Peer Energy Trading6.2.2 Potential Applications of Blockchain Technologies6.2.3 Comparison Remark6.3 Example Research 1: Peer-to-Peer Trading Integrating Energy and Carbon Markets6.3.1 Introduction6.3.2 Trading Framework6.3.2.1 Prosumer-Centric Trading6.3.2.2 Microgrid-Trader-Centric Trading6.3.2.3 Peer-to-Peer Trading Platform6.3.3 Problem Formulation6.3.3.1 Carbon Emissions Flow6.3.3.2 Prosumer-Centric Algorithm6.3.3.3 Microgrid-Trader-Centric Algorithm6.3.3.4 Smart Contract-Based Auction Mechanism6.3.4 Case Studies6.3.4.1 Simulation Setup and Data Availability6.3.4.2 Balancing Performances of Energy and Carbon Allowance6.3.4.3 Demonstration of Interface between Scheduling Algorithms and Smart Contract6.3.4.4 Demonstration of Smart Contract Execution6.3.5 Research Summary6.4 Example Research 2: Blockchain-Secured Peer-to-Peer Energy Trading6.4.1 Introduction6.4.2 System Model6.4.2.1 Peer-to-Peer Trading Framework6.4.2.2 Transaction Standard6.4.2.3 Address Generation6.4.3 Energy and Carbon Markets Coupling Theory6.4.4 Case Studies6.4.5 Evaluation of Decentralised Trading Scheme6.4.5.1 Peer-to-Peer Trading6.4.6 Research SummaryBIBLIOGRAPHYChapter 7 Cyber Physical System Modelling for Energy Internet7.1 Review of Cyber Physical System Modelling Methods7.1.1 ICT-Based CPS Modelling7.1.1.1 ICT for CPS7.1.1.2 Cyber Security for CPS7.1.2 Energy System-Based CPS Modelling7.1.3 Hybrid CPS Modelling7.2 Multi-Vector Energy System7.2.1 Coordination for Multi-Vector Energy System7.2.1.1 Multi-Vector Energy System Modelling7.2.1.2 MVES Coordination Modelling7.2.2 Artificial Intelligence Enhancing Multi-Vector Energy System7.2.2.1 Addressing Physical Constraints in Artificial Intelligence Algorithms7.2.2.2 Deep Learning Enhanced Multi-Vector Energy System7.2.3 Remarks of ChallengesBIBLIOGRAPHYSection III Testbeds for Smart Energy SystemsChapter 8 Developing Testbeds for Smart Energy Systems8.1 Review of Energy Systems Testbeds8.1.1 Hardware-Based Designs8.1.2 Software-Based Designs8.1.3 Hybrid Designs8.1.4 Remarks of Challenges8.2 Testbed Design and Implementation for Energy Systems8.2.1 ICT Implementation8.2.1.1 Integration via Layered Architecture8.2.1.2 Software-Defined Radio Implementations8.2.1.3 Protocol Pool Method8.2.2 Power System Implementation8.2.2.1 Simulator-Based Implementation8.2.2.2 Real-Time Simulations8.2.3 Artificial Intelligence Integration8.2.3.1 An Integration of Reinforcement Learning with the Testbed8.2.3.2 Remarks on the Integration of Artificial Intelligence8.2.4 Interfacing Techniques8.2.4.1 Software-Based Interfacing Techniques8.2.4.2 Hardware-Based Interfacing Techniques8.2.5 Remarks of ChallengesBIBLIOGRAPHYIndex