표제지
목차
Nomenclature 13
논문요약 16
제1장 서론 18
1.1. 연구 배경 18
1.2. 선행 연구 21
1.2.1. 암모니아 연소성 21
1.2.2. NOₓ 배출 특성 21
1.2.3. 실증 규모 실험 22
1.2.4. 열성능 및 경제성 평가 22
1.3. 연구 필요성 및 목적 25
제2장 연구 방법 28
2.1. 플랜트 공정해석 28
2.1.1. 대상 플랜트 28
2.1.2. 보일러 시스템 모델 31
2.1.3. 터빈 시스템 모델 41
2.1.4. 모델 연계 알고리즘 44
2.1.5. 암모니아 혼소 시나리오 46
2.2. 경제성 평가 48
2.2.1. 경제성 평가 기법 48
2.2.2. 경제성 평가 조건 50
제3장 연구 결과 51
3.1. 암모니아 혼소에 따른 플랜트 성능 평가 51
3.1.1. 물질 정산 51
3.1.2. 복사 열전달량 53
3.1.3. 대류 열전달량 57
3.1.4. 배가스 온도 59
3.1.5. 물-증기 온도 62
3.1.6. CO₂ 저감량과 플랜트 효율 65
3.1.7. 터빈 전력 생산량 확보 67
3.2. 암모니아 생산 방법에 따른 암모니아 혼소 경제성 평가 69
3.2.1. 경제성 평가 주요 항목 69
3.2.2. 암모니아 가격에 따른 경제성 평가 결과 71
3.2.3. 탄소배출권 가격에 따른 경제성 평가 결과 73
3.2.4. 터빈 전력 생산량 확보에 따른 경제성 평가 결과 75
제4장 결론 77
4.1. 결론 77
4.2. 향후 연구 79
참고문헌 80
부록 88
Performances 91
ABSTRACT 92
Table 1.1. The prospects of power generation and ratios by source. 19
Table 1.2. Thermal properties and fundamental combustion characteristics of ammonia and hydrocarbon fuels. 19
Table 1.3. Literature survey on ammonia combustibility. 23
Table 1.4. Literature survey on ammonia co-firing. 23
Table 2.1. Design coal conditions of the target plant. 30
Table 2.2. Main operating conditions of the target PC boiler at BMCR load. 30
Table 2.3. Fouling factors of the heat exchanger in the boiler system model. 38
Table 2.4. Validation results of the boiler system model for flue gas temperature. 40
Table 2.5. Validation results of the boiler system model for water-steam temperature. 40
Table 2.6. Validation results of the turbine system model. 42
Table 3.1. Mass balance results in IEAR scenario. 52
Table 3.2. Mass balance results in IAFT scenario. 52
Table 3.3. Flue gas temperature in IEAR scenario. 60
Table 3.4. Flue gas temperature in IAFT scenario. 60
Table 3.5. Water-steam temperature in IEAR scenario. 63
Table 3.6. Water-steam temperature in IAFT scenario. 63
Table 3.7. Analysis of CO₂ emissions due to additional fuel input in IEAR scenario. 68
Table 3.8. Analysis of CO₂ emissions due to additional fuel input in IAFT scenario. 68
Table A.1. Import price of ammonia according to ammonia production methods. 89
Table A.2. Benefit and cost components associated with ammonia co-firing introduction. 89
Table A.3. Ammonia vaporizer installation cost. 90
Table A.4. Ammonia vaporizer maintenance and operational cost. 90
Fig. 1.1. Evaluation results of thermal performance in the boiler and economic evaluation due to ammonia co-firing. 24
Fig. 1.2. Schematic diagram of the methodology in this paper. 27
Fig. 2.1. Schematic diagram of the process simulation model of the target plant. 29
Fig. 2.2. Schematic diagram of the boiler system model. 32
Fig. 2.3. Schematic diagram of the calculation process of the boiler system model. 38
Fig. 2.4. The turbine system model based on Aspen Plus. 42
Fig. 2.5. The HPTs, IPTs, and LPTs in the turbine system model. 43
Fig. 2.6. The linkage algorithm for deriving the plant process simulation model. 45
Fig. 2.7. Adiabatic flame temperature and EAR for IEAR scenario. 47
Fig. 2.8. Adiabatic flame temperature and EAR for IAFT scenario. 47
Fig. 3.1. Variation rate of radiative heat transfer to EVA due to NH₃ co-firing. 55
Fig. 3.2. Variation rate of radiative heat transfer to SH2 due to NH₃ co-firing. 55
Fig. 3.3. Convective heat transfer in IEAR scenario. 58
Fig. 3.4. Convective heat transfer in IAFT scenario. 58
Fig. 3.5. Flue gas temperature in IEAR and IAFT scenario. 61
Fig. 3.6. Water-steam temperature in IEAR and IAFT scenario. 64
Fig. 3.7. CO₂ reduction and plant efficiency in IEAR scenario. 66
Fig. 3.8. CO₂ reduction and plant efficiency in IAFT scenario. 66
Fig. 3.9. The key components of economic evaluation. 70
Fig. 3.10. The economic evaluation results based on NH₃ price. 72
Fig. 3.11. The economic evaluation results based on CER price. 74
Fig. 3.12. The economic evaluation results of additional fuel input to secure turbine power generation. 76