권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Contents
Abstract 22
Chapter 1. Introduction 24
1-1. Hot carriers 24
1-1-1. Excited carrier dynamics 24
1-1-2. Hot carrier dynamics 26
1-1-3. Hot carrier applications 28
1-2. Hot carriers in 2D semiconductors 32
1-2-1. Hot carrier physics in 2D materials 32
1-2-2. Hot carrier extraction from 2D semiconductors 33
1-3. 2D material/metal electrode interface 36
1-3-1. Electrode engineering 36
1-3-2. Electrode contact interfaces 37
1-4. Experimental method 41
1-4-1. Transient absorption spectroscopy 41
1-4-2. vdW metal mask 42
Chapter 2. Photophysics in 2D semiconductor/metal interfaces 46
2-1. Hot carrier transfer in monolayer TMD/metal heterostructures 46
2-1-1. Introduction 46
2-1-2. Experimental method 48
2-1-3. Results and Discussion 50
2-1-4. Conclusion 52
2-2. Carrier dynamics in bulk MoS₂/Au interfaces 56
2-2-1. Introduction 56
2-2-2. Experimental method 59
2-2-3. Results and Discussion 61
2-2-4. Conclusion 68
2-3. Evidence of hot carrier extraction in bulk MoS₂ 76
2-3-1. Introduction 76
2-3-2. Experimental method 78
2-3-3. Results and Discussion 79
2-3-4. Conclusion 81
2-4. Electrode engineering modulated absorption 85
2-4-1. Introduction 85
2-4-2. Experimental method 87
2-4-3. Results and Discussion 88
2-4-4. Conclusion 93
Chapter 3. 2D optoelectronic devices 99
3-1. Photovoltaic devices with vdW electrode engineering 99
3-1-1. Introduction 99
3-1-2. Experimental method 101
3-1-3. Results and Discussion 103
3-1-4. Conclusion 107
3-2. Dark current suppression in 2D Vertical device 111
3-2-1. Introduction 111
3-2-2. Experimental method 113
3-2-3. Results and Discussion 114
3-2-4. Conclusion 119
3-3. Silicon photodiode compatible photodetector 125
3-3-1. Introduction 125
3-3-2. Experimental method 128
3-3-3. Results and Discussion 129
3-3-4. Conclusion 134
3-4. SWIR photodetector via electrode-engineered midgap absorption 142
3-4-1. Introduction 142
3-4-2. Experimental method 145
3-4-3. Results and Discussion 145
3-4-4. Conclusion 151
References 159
논문요약 170
Figure 1-1-1. Schematic of the excited carrier dynamics of a general 2D semiconductor. 30
Figure 1-1-2. Power conversion efficiency of hot carrier solar cellas a function of absorber bandgap at various carrier temperatures. 30
Figure 1-1-3. Schematic of the ultrafast optoelectronic working based on the hot carriers. 31
Figure 1-1-4. Schematic of the wavelength and spin photocurrent achieved via extracting the hot carriers. 31
Figure 1-2-1. Hot carrier transport measurement with the pump-probe microscopy. 34
Figure 1-2-2. PL and transient absorption data demonstrating the hot carrier transfer from the MoS₂ to Au nanoparticles. 35
Figure 1-3-1. Ideal Schottky barrier achieved via the metal electrode transfer method. 39
Figure 1-3-2. The contact interface engineering for modulating the band hybridization in the interface. 39
Figure 1-3-3. The schematic of the interface condition between MoS₂ and metal electrode in ideal case and in real devices. 40
Figure 1-4-1. The schematic of the pump-probe transient reflection setup and the mechanism of the transient reflection signals. 43
Figure 1-4-2. The equipment setup and materials for the metal film transfer with the probe tip. 44
Figure 1-4-3. The representative process for the van der Waals metal mask assisted treatment. 44
Figure 1-4-4. The cross-section scanning transmission electron microscopy (STEM) image demonstrating the van der Waals contact between 2D material... 45
Figure 2-1-1. The schematic and the optical microscope image of the sample for the transient absorption spectroscopy. 53
Figure 2-1-2. (a, b) The transient absorption spectrum and the kinetics data in pristine WSe₂ and WSe₂/Au heterostructure. 53
Figure 2-1-3. The schematic of the carrier dynamics in the pristine WSe₂ and the WSe₂ on Au. 54
Figure 2-1-4. (a) The schematic of the MoS₂ sample which contacted its half part with Ti. (b, c) The kinetics data of A and B exciton in MoS₂ and MoS₂ Ti. 54
Figure 2-1-5. (a)The transient reflection mapping of pristine bulk MoS₂. (b) The steady state reflection and transient reflection spectrum at 2 ps delay time.... 55
Figure 2-1-6. The schematic of the photocarrier dynamics in the bulk MoS₂. 55
Figure 2-2-1. Schematic of the sample fabrication with the probe tip assisted metal film transfer method. 69
Figure 2-2-2. (a) Schematic of the interface structure in the sample. (b) Optical microscope image of the sample measured from the transparent... 69
Figure 2-2-3. (a, b) The atomic force microscope image of the flat Au and the rugged Au, respectively. 70
Figure 2-2-4. The scanning transmission electron microscope images of the MoS₂ and rugged Au interface. 70
Figure 2-2-5. The absorption spectra of the four different regions in the sample on Figure 2-2-2. 71
Figure 2-2-6. (a) The schematic for demonstrating the fermi level shift in the MoS₂ after contact with different Au. (b) The band bending condition of the... 71
Figure 2-2-7. The transient reflection mapping at different delay times. 72
Figure 2-2-8. (a)The △R kinetics data of the four different regions in the sample in Figure 2-2-7. (b) The extracted decay constant from Figure 2-2-8a. 72
Figure 2-2-9. The △R kinetics data of the MoS₂ and MoS₂/Au heterostructures in the sample demonstrated in Figure 2-2-2b. 73
Figure 2-2-10. The kinetics of transient reflection of sample #3. (a)The △R kinetics data of the MoS₂ and MoS₂/Au heterostructures. (b) The optical... 73
Figure 2-2-11. The kinetics of transient reflection of sample #4 which includes pristine MoS₂, MoS₂/pt, MoS₂/Au and MoS₂/Ag. 74
Figure 2-2-12. The schematic of the carrier dynamics happens in MoS₂ and MoS₂/Au interfaces. 74
Figure 2-2-13. The normalized △R kinetics of the MoS₂ and MoS₂/rugged Au corresponding to Figure 2-2-8a. 74
Figure 2-2-14. The hot electron transfer dynamics from Au to MoS₂ in different interfaces. (a) The schematic of the pump-probe reflection... 75
Figure 2-2-15. The schematic of hot electron dynamics of MoS₂ and MoS₂/Au interfaces. 75
Figure 2-3-1. The schematic of the carrier transport measurement with the pump-probe transient reflection microscopy. 82
Figure 2-3-2. Normalized spatial distributed △R signal in each time delay in pristine MoS₂ and MoS₂/Au interfaces. 83
Figure 2-3-3. Carrier transport in pristine MoS₂ and MoS₂/Au interfaces in the ultrashort timescale up to 1.4 ps extracted from Figure 2-3-2. 83
Figure 2-3-4. (a) Schematic of the photocarrier extraction from the MoS₂ to Au electrode within the lateral device structures. Bottom panel demonstrate the... 84
Figure 2-3-5. (a) The schematic of the carrier transport in the pristine MoS₂ and MoS₂ on rugged Au. (b) The schematic of the carrier transport in the MoS₂... 84
Figure 2-4-1. The schematic of the metal electrode deposition and defect generation in the interfaces. 94
Figure 2-4-2. The schematic of MoS₂/metal electrode interface fabricated with different electrode integration methods. 94
Figure 2-4-3. The absorption spectrum of three different MoS₂/Au electrode interfaces in Figure 2-4-2. 95
Figure 2-4-4. The cross section scanning transmission electron microscope image of three different MoS₂/Au interfaces demonstrated in Figure 2-4-2. 95
Figure 2-4-5. (a) The optical microscope image of the MoS₂ with its half area deposited with Au. (b) The absorbance in the MoS₂ with and without the... 96
Figure 2-4-6. The absorption spectrum of the ultrathin Au deposited on the MoS₂/Au heterostructure. The metal mask was used for covering half area... 96
Figure 2-4-7. (a) schematic of the sample which includes the ultrathin Au layers fabricated with all-van der Waals integration method. (b) The absorption... 97
Figure 2-4-8. The AFM image of the ultrathin Au layer deposited on MoS₂. The thickness of the Au layer is 2.3 nm and it remains ultraflat with this thin thickness. 97
Figure 2-4-9. (a) The optical microscope image as well as the thickness of the samples. (b) The absorption spectrum of the sample displayed in Figure 2-4-... 98
Figure 2-4-10. (a) The schematic of the intermediate band absorption in the defective interfaces. (b) The schematic of Fabry-Perot like cavity formed in... 98
Figure 3-1-1. The schematic of the PN junction formation in the channel due to the van der Waals electrode induced carrier doping. 108
Figure 3-1-2. (a) The atomic force microscope image of the template-striped Ag surface. (b) The atomic force microscope image of the template-striped Pt surface. 108
Figure 3-1-3. (a) The OM image of the device. (b) The current-voltage curve measured in the device showing the diode characteristics. 108
Figure 3-1-4. (a) The current-voltage curve of the device under dark and 1062 nm laser excitation. (b) The time dependent current sampling with the... 109
Figure 3-1-5. The schematic of the vertical photovoltaic device fabrication via the van der Waals metal mask and van der Waals electrode transfer. 109
Figure 3-1-6. (a) The schematic of the device structure. (b) The OM image of the vertical photovoltaic device. (c) The atomic force microscope image of... 109
Figure 3-1-7. The current-voltage curve of the device under dark and light conditions. 110
Figure 3-1-8. The photocurrent mapping demonstrates the dependence on the bias voltage and the excitation wavelength. 110
Figure 3-1-9. The wavelength-dependent photocurrent in different bias voltages. To elucidate the bias-dependent quantum efficiency, external... 110
Figure 3-2-1. (a) The schematic of the ultrafast photocarrier extraction in the vertical devices. (b) The van der Waals electrode engineering for blocking the... 120
Figure 3-2-2. The schematic shows the van der Waals integration of all components of device with van der Waals stacking. 120
Figure 3-2-3. (a) The optical microscope image of the fabricated device. (b) The cross-section scanning transition electron microscopy image of the device.... 121
Figure 3-2-4. The current-voltage curve of the device under dark and light conditions. It is demonstrated with the semi-log scale. 121
Figure 3-2-5. The excitation power dependent photocurrent measured in our vertical photodetector. 121
Figure 3-2-6. The current-voltage curve of the device scanned with the forward and reverse mode. 122
Figure 3-2-7. (a) The optical microscope image of several different devices with the same device structure. (b, c) The corresponding current-voltage curve... 122
Figure 3-2-8. (a) The schematic of vertical devices. (b-d) The vertical photodetectors with different device configurations. 123
Figure 3-2-9. The current-voltage curve of the vertical photodetector under dark and light conditions. It was demonstrated in the linear scale with two... 123
Figure 3-2-10. The schematic of the photocurrent response under negative and positive bias voltages. 124
Figure 3-2-11. (a) The optical microscope image (top panel) and the schematic of the device (bottom panel). (b, c) The current-voltage curve of the device,... 124
Figure 3-3-1. (a) The current-voltage curve with different light power density from 24 uW cm⁻² to 1.1 W cm⁻². (b) The photocurrent (top panel) and... 135
Figure 3-3-2. The light power density dependent photocurrent measured with the time resolved photocurrent measurement. 136
Figure 3-3-3. The linear photocurrent dependence on the power density in different wavelength laser of 458 nm, 640 nm and 725 nm. 136
Figure 3-3-4. The photocurrent under the different wavelength light. 137
Figure 3-3-5. (a) The photocurrent responsivity resolved by the bias voltage and the wavelength. (b) The wavelength dependent photocurrent responsivity... 137
Figure 3-3-6. (a) The photocurrent response speed measured with the pump-probe photocurrent measurement. (b, c) The photocurrent response speed... 138
Figure 3-3-7. The comparison of the photodetector performances with other 2D material-based photodetectors and silicon photodiode. 138
Figure 3-3-8. (a) The photograph of the real device on the bendable mica substrate and the schematic of the device structure. (b) The current-voltage... 139
Figure 3-3-9. The time dependent photocurrent measurement with the light on/off with every 20 seconds under the flat, bending and after 1000 times bending. 139
Figure 3-3-10. The 3D mapping data of the dark current and photocurrent under different temperature and bias voltages. 140
Figure 3-3-11. (a) The time dependent photocurrent under different temperatures. (b) The temperature dependent current under different bias voltages. 140
Figure 3-3-12. The current-voltage curve of the device before and after annealing at 200℃ measured under the dark and light conditions. 141
Figure 3-4-1. The equipment setup for measuring the localized photocurrent of the 1310 nm and 1550 nm wavelength. (b, c) The optical microscope image... 152
Figure 3-4-2. (a) The optical microscope image of the device with the deposited electrode and transferred electrode integrated to the MoS₂. (b) The... 153
Figure 3-4-3. (a) The basic current-voltage curve measured in the device shown In Figure 3-4-2a. 153
Figure 3-4-4. The photocurrent mapping of the device under 808 nm laser light under different bias voltages. 153
Figure 3-4-5. The schematic image of the carrier dynamics in the two different electrode interfaces. 154
Figure 3-4-6. The absorption spectrum of the MoS₂ on two different electrodes in the sample is shown in Figure 3-4-2a. 154
Figure 3-4-7. (a, b) The photocurrent mappings of -1 V and 1 V bias voltage, respectively, under the 455 nm laser excitation. 155
Figure 3-4-8. (a) The current-voltage curve of the device under dark and light illumination on the deposited Au electrode side with 1310 nm and 1550 nm... 155
Figure 3-4-9. (a) The time-dependent photocurrent under 1310 nm and 1550 nm light excitation on the deposited electrode side. (b)The time-dependent... 156
Figure 3-4-10. (a) The photocurrent response speed of the device with 1310 nm and 1550 nm light excitation. (b) The linear dependence of the photocurrent... 156
Figure 3-4-11. The device fabricated with the structure of deposited Au/TMD/transferred Au with changing the TMD materials. (a-d) The current-... 157
Figure 3-4-12. The photocurrent response of the device. The large area beam covering the whole device area was illuminated both for 1310 nm and 1550 nm... 158
Figure 3-4-13. The comparison of the device performance for the 2D material-based infrared photodetectors. 158
광전소자는 태양광전지판, 카메라 및 조명등을 포함하여 우리 일상생활에서 널리 사용되고 있다. 또한 미래산업인 자율 주행 차량, 양자 정보, 양자 컴퓨팅 및 우주산업에서의 핵심 소자로 자리하고 있다. 반도체 재료는 광전소자 기술의 핵심이며, 이러한 재료는 특정 전자 밴드 갭이 있어 빛-물질 상호작을 통해 빛에너지/신호를 전기 에너지/신호로 전환하여 사용할 수 있다. 빛의 흡수에 의한 반도체 물질의 캐리어 밀도가 변화하며 이를 통해 광전류를 일으키고 다양한 기능성 소자 제작을 가능하게 한다. 빛에 의해 여기된 광캐리어의 동역학 과정은 모든 광전소자 설계와 제작에 있어서 중요한 역할을 한다. 지금까지 개발될 모든 광전소자는 반도체의 밴드 가장자리 상태에 위치한 '냉각된' 캐리어를 활용하며, 이러한 캐리어는 빛 자극 후 1 ps 이내에 '뜨거운' 핫 캐리어의 냉각으로 생성된다. 그러나 이러한 냉각 과정은 격자와의 상호 작용으로 인해 상당한 에너지 소모와 가열 문제를 야기한다. 더 효율적인 광-전 변환 소자를 추구하기 위해 반도체로부터 '뜨거운' 캐리어를 직접 추출하는 것이 새로운 광전자 기술의 이상적인 방법이다. 이를 실현하기 위해서는 원자 단위의 매우 작은 채널 길이를 갖는 초단채널 광전소자 개발이 필요하다. 그러나 기존에는 이러한 얇은 소자는 광흡수가 매우 약하며, 나노미터 두께의 고결정성 반도체 필름의 합성 또한 매우 극복하기 어렵다. 이차원 (2D) 소재의 출현으로 원자단위 두께의 광전소자 제작이 가능해졌고 초고속으로 뜨거운 핫캐리어 추출을 실현할 가능성이 생겼다.
본 연구에서는 이러한 핫캐리어 광전소자 실현을 목표로 전극 계면에서의 캐리어 동역학 분석 및 수직구조 소자 측정 등 광학적/전기적 방법을 결합하여 핫 캐리어 소자 실현 가능성을 탐구하였다. 2D 반도체/금속 전극 인터페이스에서 핫 캐리어 냉각, 핫캐리어 추출 및 캐리어의 재결합과 같은 초고속 캐리어 동역학에 집중하여 연구하였으며 다양한 전극 제작방법에 따라 변하는 전극 계면과 이에 의존하는 캐리어 동역학 과정을 탐구하였다. 또한 초고속 흡수/반사 분광법 기술을 이용하여 전극 인터페이스에서의 캐리어 역학을 정량적으로 측정하고 분석하였다. 단일원자층 2D 소재에서 금속 전극으로 뜨거운 캐리어의 이동을 확인하였고 벌크상의 이차원 반도체와 금속 간 인터페이스에서도 뜨거운 캐리어 추출의 가능성을 검증하였다. 나아가 계면에서의 결함 혹은 불순물의 영향을 최소화하기 위하여 van der Waals 금속 마스크 기술을 개발하고 이를 이용하여 2D 반도체 및 금속의 접합구조 샘플을 구축했다. 이에 더해 전극공정 및 광전자 동역학 지식을 이용하여 이차원 물질 기반의 수직구조의 태양전지 소자 및 고성능의 광검출기를 구현하였고, 응용 가능성을 시사했다. 본 연구에서 진행한 핫캐리어 동역학 연구결과는 미래 이차원 소재기반 핫캐리어 광전소자 개발에 기반 역할을 할 것이다.*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.