The soil in north Gyeongsangbuk-do is mostly made up of sand, which lacks various essential minerals for growing crops, and also increases the pollution of the surrounding water when it rains. Therefore, the applicability of water pollution reduction and soil restoration was examined by using compost prepared by mixing MgO and mineral sources in a weight ratio of 1:2 with the existing Korean cattle compost. MgO used is a powder obtained by activating MgCO₃ natural stone at 800°C for 2 hours, and the mineral source was made by adding white soil to a sulfuric acid solution and heating it at 80°C for 1 h and then recovering the sulfuric acid solution. After spraying the prepared compost on 20 farmland, water pollution and soil fertility were measured through analysis of water and soil items such as TOC, BOD, T-N, and T-C before and after spraying. When newly prepared compost was applied to the soil, the concentrations of TOC, BOD, T-N, and TP were reduced by 19.09%, 28.0%, 30.9%, and 27.5%, respectively, compared to commercial compost. On the basis of these results, it was confirmed that newly prepared compost is better than commercial compost for the water pollution reduction effect and the inhibition of green algae generation. Through soil analysis, the levels of EC and effective phosphoric acid in the soil were lower in the newly prepared compost than in the commercial compost. It is expected that soil fertility can be increased by reducing the rate of nutrient loss caused by rainfall.