본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

제I장 서론 18

제II장 이론적 배경 21

제1절 지르코늄 합금의 일반적인 특징 21

제2절 지르코늄 합금의 산화 22

제3절 산화속도의 천이기구 27

1. 산화속도의 천이 27

2. 천이기구 30

제4절 지르코늄 합금의 산화 특성 32

1. 첨가원소가 산화에 미치는 영향 32

2. 석출물이 산화에 미치는 영향 33

3. 결정방위에 따른 산화특성 37

4. 산화막과 산화와의 관계 39

제III장 실험방법 41

제1절 Zr 합금 제조 41

1. Ingot 제조 41

2. β-열처리 46

3. 열간압연 및 열처리 46

4. 냉간압연 및 열처리 46

5. 수소장입 47

제2절 미세조직 관찰 48

제3절 산화 특성 평가 48

제4절 산화막 특성 평가 51

1. 결정구조의 분석 51

2. 잔류응력 측정 51

제IV장 결과 및 고찰 61

제1절 Zr-Nb-Sn합금의 산화에 미치는 Sn의 영향 61

1. 개요 61

2. 광학현미경을 이용한 미세조직 관찰 61

3. 기계적 특성 평가 64

4. TEM을 이용한 미세조직 관찰 65

5. 산화 특성 평가 74

6. 산화에 따른 산화막 특성 분석 88

7. 요약 92

제2절 Zr합금의 부식에 미치는 응력의 영향 93

1. 개요 93

2. 열처리 변수 93

가. 광학현미경을 이용한 미세조직 관찰 93

나. 기계적 특성 94

다. TEM을 이용한 미세조직 관찰 97

라. 산화 특성 평가 103

마. 산화에 따른 산화막 특성 평가 108

바. 요약 113

3. 집합조직 변수 114

가. 광학현미경을 이용한 미세조직 관찰 114

나. 집합조직 114

다. 기계적 특성 118

라. 산화 특성 평가 120

마. 산화에 따른 산화막 특성 평가 126

바. 요약 131

4/3. 수소화물 변수 133

가. 광학현미경을 이용한 미세조직 관찰 133

나. 기계적 특성 138

다. 산화 특성 평가 143

라. 산화에 따른 산화막 특성 평가 143

마. 요약 157

제V장 결론 158

Reference 160

Abstract 165

List of Table

Table 1. Properties of pure Zr 21

Table 2. Chemical compositon of Zr-based alloys to study of aloying element effect on corrosion 42

Table 3. Chemical compositon of Zr-based alloys to study of stress effect on corrosion 43

List of Figure

Fig. 1. Corrosion of zirconium and Zircaloys in pressurized water and steam(pre-transiton regime) 23

Fig. 2. Phase diagram of the zirconium-oxygen system19)(이미지참조) 25

Fig. 3. Schematic diagram of oxude film of the Zircaloy-2 and the processduring oxidation20)(이미지참조) 26

Fig. 4. Schematic corrosion behavior of the Zircaloy-4 in the temperature rangeof 260 to 400'C23)(이미지참조) 29

Fig. 6. X-ray diffaction pattern to the specimen 56

Fig. 7. Stresses at the surface of a stress body ; o3=O and measured stress is(이미지참조) 57

Fig. 8. Vector diagram of plane spacing for a tensile stress(이미지참조) 59

Fig. 9. Maufacturing process of Zr-Nb-Sn alloys to study of alloying element effect on corrosion 44

Fig. 10. Manufacturing process of Zr-Nb-Sn alloys to study of stress effect on corrosion 45

Fig. 11. Schematic darwing of static autocave 50

Fig. 12. Optical Microstructures of Zr-Nb-Sn Alloys with variation of Nb and Sn contents (F. A.: 470'C) 62

Fig. 13. Optical Microsturctures of Zr-Nb-Sn Alloys wit vaaton of Nb and Sn contents (F. A.: 510'C) 63

Fig. 14. Micro-hardness of Zr-Nb-Sn alloys with variaton of Nb and Sncontents (F.A: 470'C) 66

Fig. 15. Micro-hardness of Zr-Nb-Sn alloys with variaton of Nb and Sncontents (F.A: 510'C) 67

Fig. 16. TEM images of Zr- Nb-Sn alloys with variation of Nb and Sn contents (F.A.: 510'C) 69

Fig. 17. TEM micrgraphs and EDS spectrum of precipitate in Zr-Nb-Sn alloys (a) Zr-0.2Nb-0.4Sn, (b) Zr-0.2Nb-1.2Sn 70

Fig. 18. TEM micrgraphs and EDS spectrum of precipitate in Zr-Nb-Sn alloys (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-1.2Sn 71

Fig. 19. TEM micrgraphs and EDS spectrum of precipitate in Zr-Nb-Sn alloys (a) Zr-1.0Nb-0.4Sn, (b) Zr-1.0Nb-1.2Sn 72

Fig. 20. TEM micrgraphs and EDS spectrum of precipitate in Zr-Nb-Sn alloys (a) Zr-1.5Nb-0.4Sn, (b) Zr-1.5Nb-1.2Sn 73

Fig. 21. Corrosion behavior of Zr-0.2Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 470'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 76

Fig. 22. Corrosion behavior of Zr-0.4Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 470'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 77

Fig. 23. Corrosion behavior of Zr-1.0Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 470'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 78

Fig. 24. Corrosion behavior of Zr-1.5Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 470'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 79

Fig. 25. Corrosion behavior of Zr-0.2Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 510'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 84

Fig. 26. Corrosion behavior of Zr-0.4Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 510'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 85

Fig. 27. Corrosion behavior of Zr-1.0Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 510'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 86

Fig. 28. Corrosion behavior of Zr-1.5Nb-xSn alloys under various conditions (x=0.2~1.2) F.A 510'C (a) 360'C water, (b) 360'C 70 pprn LiOH and (c) two conditions 87

Fig. 29. Tetragonal phase volume fraction of Zr-Nb-Sn alloys corroded at water condition. (a) Oxide surface, (b) Mid-range and (c) Oxide/Metal interface 89

Fig. 30. Tetragonal phase volume fraction of Zr-Nb-Sn alloys corroded at 70ppm LiOH condition. (a) Oxide surface, (b) Mid-rage and (c) Oxide/Metal interface 90

Fig. 31. Optical microstructure of Zr-(0.4, 1.5)Nb-(0.4, 0.8)Sn alloys with the various temperature (F.A.; 580 or 680'C) 95

Fig. 32. Micro-hardness of Zr-Nb-Sn alloys with the final annealing temperature (F.A: 580'C, 680'C); (a) Zr-0.4Nb-xSn, (b) Zr-1.5Nb-xSn (x=0.4, 0.8) 96

Fig. 33. TEM images of Zr(0.4, 1.5)Nb-(0.4, 0.8)Sn alloys with the various temperature (F.A; 580 or 680'C) 98

Fig. 34. TEM micrographs and EDS spectrums of precipitate in Zr-0.4Nb-0.4Sn alloys at various temperature; (a) F.A. 580'C, (b) F.A. 680'C 99

Fig. 35. TEM micrographs and EDS spectrums of precipitate in Zr-0.4Nb-1.2Sn alloys at various temperature; (a) F.A. 580'C, (b) F.A. 680'C 100

Fig. 36. TEM micrographs and EDS spectrums of precipitate in Zr-0.4Nb-1.2Sn alloys at various temperature; F.A. 580'C: (a) β-enriched, (b) Zr2Fe-type ppt, F.A. 680'C: (c) β-Zr 101

Fig. 37. TEM micrographs and EDS spectrums of precipitate in Zr-1.5Nb-1.2Sn alloys at various temperature; F.A. 580'C: (a) Zr2Fe-type ppt (b)β-enriched, F.A. 680'C: (c) β-Zr 102

Fig. 38. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C water (F.A.; 580 or 680'C); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 104

Fig. 39. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (F.A.; 580 or 680'C); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 105

Fig. 40. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C water (F.A.; 580 or 680'C); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 106

Fig. 41. Corrosion behaviors of Zr-1.5Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (F.A.; 580 or 680'C); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 107

Fig. 42. Tetragonal phase volume fraction of Zr-0.4Nb-0.4Sn alloys corroded at water condition; (a), (d): Oxide surface, (b), (e): Middle and.... 109

Fig. 43. Tetragonal phase volume fraction of Zr-1.5Nb-0.4Sn alloys corroded at water condition; (a), (d): Oxide surface, (b), (e): Middle and.... 110

Fig. 44. Internal stresses at oxide in the Zr-0.4Nb-0.4Sn alloys; (a) 580'C: -802.5Mpa, (b) 680'C: -766Mpa 111

Fig. 45. Optical micrstructure of Zr-(0.4, 1.5)Nb-(0.4, 0.8)Sn alloys with the various texture 115

Fig. 46. (0002) pole figures with rolling method in Zr-0.4-(0.4, 0.8)Sn alloys; (a) Zr-0.4Nb-0.4Sn; Low texture, (b) Zr-0.4Nb-0.8Sn; Low texture, (c).... 116

Fig. 47. (0002) pole figures with rolling method in Zr-4.5-(0.4, 0.8)Sn alloys; (a) Zr-0.4Nb-0.4Sn; Low texture, (b) Zr-1.5Nb-0.8Sn; Low texture, (c).... 117

Fig. 48. Micro-hardness of Zr-Nb-Sn alloys with the textrue (Low texture, High texture); (a) Zr-0.4Nb-xSn, (b) Zr-1.5Nb-xSn (x=0.4, 0.8) 119

Fig. 49. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn aloys in 360.C water; (a) Zr-0.4Nb-OASn, (b) Zr-0.4-0.8Sn 122

Fig. 50. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH; (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 123

Fig. 51. Corrosion behaviors of Zr-1.5Nb-(A, 0.8)Sn alloys in 360'C water; (a) Zr-1.5Nb-0.4Sn, (b) Zr-1.5N-0.8Sn 124

Fig. 52. Corrosion behaviors of Zr-1.5N-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH; (a) Zr-1.5N-0.4Nb, (b) Zr-1.5Nb-0.8Sn 125

Fig. 53. Tetragona phase volume fraction of Zr-0.4Nb-0.4Sn alloys coroded at water condtion; (a), (d): Oxide surace, (b), (e): Mid-range and (c), (f)........ 127

Fig. 54. Tetragona phase volume fraction of Zr-1.5Nb-0.4Sn alloys coroded at water condtion; (a), (d): Oxide surace, (b), (e): Mid-range and (c), (f)........ 128

Fig. 55. Internal stresses at oxde in the Zr-1.5Nb-0.4Sn alloys; (a) Low Texture: -87.5Mpa, (b) Hgh Textue: -85.5Mpa 129

Fig. 56. Internal stesses at inta oxde in te Zr-l.5N-O.4Sn aloys; (a) Low Textre: -77.2Mpa, (b) Hgh Textue: -800.5Mpa 130

Fig. 57. Optica mcrostrcture of Zr-0.4Nb-(0.4, 0.8)Sn aoys with the hyddng or non-hyddng(Low Texture, 580'C) 134

Fig. 58. Optica mcrstrctue of Zr-0.4Nb-(0.4, 0.8)Sn alloys with the hyddng or non-hyddng(Hgh Textue, 580'C) 135

Fig. 59. Optica mcrstrcue of Zr-1.5Nb-(0.4, 0.8)Sn alloys with the hyddng or non-hydcng(Low Texture, 580°C) 136

Fig. 60. Optica mcrstrcture of Zr-1.5Nb-(0.4, 0.8)Sn alloys with the hyddng or non-hydcng(Hgh Textue, 580'C) 137

Fig. 61. Micro-hadess of Zr-0.4Nb-(0.4, 0.8)Sn alloys with the low textue and 580'C 139

Fig. 62. Micro-hadess of Zr-0.4Nb-(0.4, 0.8)Sn alloys with the high textue and 580'C 140

Fig. 63. Micro-hadness of Zr-1.5Nb-(0.4, 0.8)Sn alloys with the low textue and 580°C 141

Fig. 64. Micro-hadness of Zr-1.5Nb-(0.4, 0.8)Sn aoys with te hgh textue and 580°C 142

Fig. 65. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C water (Hydriding; None or 400ppm, 580°C, Low Texture); (a) Zr-0.4Nb-0.4Sn (b) Zr-0.4Nb-0.8Sn 144

Fig. 66. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C water (Hydriding; None or 400ppm, 580°C, Low Texture); (a) Zr-0.4Nb-0.4Sn (b) Zr-0.4Nb-0.8Sn 145

Fig. 67. Corrosion behaviors of Zr-1.5Nb-(0.4, 0.8)Sn alloys in 360'C water (Hydriding; None or 400ppm, 580°C, Low Texture); (a) Zr-1.5Nb-0.4Sn (b) Zr-1.5Nb-0.8Sn 146

Fig. 68. Corrosion behaviors of Zr-1.5Nb-(0.4, 0.8)Sn alloys in 360'C water (Hydriding; None or 400ppm, 580°C, Low Texture); (a) Zr-1.5Nb-0.4Sn (b) Zr-1.5Nb-0.8Sn 147

Fig. 69. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (Hydriding; None or 400ppm, 580'C, Low Texture); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 148

Fig. 70. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (Hydriding; None or 400ppm, 580'C, Low Texture); (a) Zr-0.4Nb-0.4Sn, (b) Zr-0.4Nb-0.8Sn 149

Fig. 71. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (Hydriding; None or 400ppm, 580'C, Low Texture); (a) Zr-1.5Nb-0.4Sn, (b) Zr-1.5Nb-0.8Sn 150

Fig. 72. Corrosion behaviors of Zr-0.4Nb-(0.4, 0.8)Sn alloys in 360'C 70ppm LiOH (Hydriding; None or 400ppm, 580'C, Low Texture); (a) Zr-1.5Nb-0.4Sn, (b) Zr-1.5Nb-0.8Sn 151

Fig. 73. Tetragonal phase volume fraction of Zr-0.4Nb-0.4Sn alloys corroded at water condition; (a), (d): Oxide surface, (b), (e): Middle and (c), (f) Oxide/Metal interface, none-hydride(a, b, c), 400ppm hydriing(d, e, f) 153

Fig. 74. Tetragonal phase volume fraction of Zr-1.5Nb-0.4Sn alloys corroded at water condition; (a), (d): Oxide surface, (b), (e): Middle and (c), (f) Oxide/Metal interface, none-hydride(a, b, c), 400ppm hydriing(d, e, f) 154

Fig. 75. Internal stresses at oxide in the Zr-0.4Nb-0.4Sn alloys(F.A. 580°C, Low Texture); (a) None-Hydriding: -802.5Ma, (b) 400ppm-Hydriding: -782.5MPa 155

Fig. 76. Internal stresses at oxide in the Zr-1.5Nb-0.4Sn alloys(F.A. 580°C, Low Texture); (a) None-Hydriding: -802.5Ma, (b) 400ppm-Hydriding: -812MPa 156