본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

1. 서론 6

2. 연구배경 8

2.1. Plasma source를 이용한 챔버 세정 8

2.2. 온실효과와 지구온난화 10

2.3. 온실가스 및 그 밖의 주요가스 16

2.3.1. 온실가스 16

2.3.2. 기타 주요가스 19

2.4. PFCs 배출저감 방책 21

2.4.1. Non-destructive emission control 기술 22

2.4.2. Destructive emission control 기술 24

3. 분석 장치 및 세정 시스템 26

3.1. Fourier transform-infrared absorption spectroscopy (FT-IR) 26

3.1.1. Infrared absorption spectroscopy (IR)의 원리 26

3.1.2. FT-IR 흡수 스펙트럼의 해석 30

3.1.3. FT-IR 분석방법 31

3.2. Residual gas analyzer (RGA) 32

3.2.1. Residual gas analyzer (RGA)의 정량화 32

4. 실험방법 33

4.1. PFC 가스의 배출량 및 온난화지수의 정량화 35

4.2. 배출된 가스 종의 흡수 스펙트럼 36

4.3. 초기조건 40

4.3.1. FT-IR calibration 40

4.3.2. N₂ pump purge rate과 각 가스에 대한 FT-IR의 linearity 확인 40

5. 실험결과 및 고찰 44

5.1. N₂ flow rate의 변화에 따른 silicon oxide etching 효과 44

5.2. 온도 350°C에서 F₂/Ar, F₂ flow rate plasma에서 N₂ 첨가가스 flow rate의 변화에 따른 silicon oxide의 etching 효과 46

5.3. 기판 온도에 따른 Various oxide layers의 etching rate 효과 49

5.4. F₂ flow rate의 변화에 따른 silicon oxide etching 효과 51

5.5. OES spectra analysis obtained from the afterglow region of the plasmas 54

5.6. FT-IR spectra analysis from the gas exhaust line 57

6. Discussion 59

7. 결론 62

참고문헌 63

Abstract 66

초록보기

 In this study, chemical dry etching characteristic of silicon oxide layers were investigated in the F₂/Ar/N₂remote plasmas. A toroidal-type remote plasma source was used for the generation of remote plasmas. The effects of additive N₂ gas on the etch rates of various silicon oxide layers deposited using different deposition techniques and precursors were investigated by varying the various process parameters, such as the F₂ flow rate, the additive N₂ flow rate and the substrate temperature. The etch rates of the various silicon oxide layers at the room temperature were initially increased and then decreased with the N₂ flow increased, which indicates an existence of the maximum etch rates. Increase in the oxide etch rates under the decreased optical emission intensity of the F radicals with the N₂ flow increased implies that the chemical etching reaction is in the chemical reaction-limited regime where the etch rate is governed by the surface chemical reaction rather than the F radical density. The etch rates of the silicon oxide layers were also significantly increased with the substrate temperature increased. In the present experiments, the Fa gas flow, additive N₂ flow rate and the substrate temperature were found to be the critical parameters in determining the etch rate of the silicon oxide layers.