본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

감사의 글

목차

국문초록 13

제1장 서론 15

제1절 연구배경 15

제2절 연구목적 19

제3절 연구방법 및 범위 19

제2장 정량적 위험성평가 이론 21

제1절 화재 및 폭발모델 21

2.1.1. BLEVE 폭풍 모델 21

2.1.2. 비산물 모텔 22

2.1.3. 화구의 복사열 모델 24

제2절 사고영향 모델 27

2.2.1. 과압 영향 27

2.2.2. 열복사 영향 28

제3장 프로판 저장시설의 정량적 위험성평가 30

제1절 사고 시나리오 설정 30

제2절 사고영향평가 결과 36

3.2.1. 과압 평가 36

3.2.2. 비산물 평가 51

3.2.3. 복사열 평가 53

제3절 사고영향평가 결과분석 73

3.3.1. 과압 평가 73

3.3.2. 비산물 평가 75

3.3.3. 복사열 평가 76

제4장 프로판 저장시설의 설계개선 방안 80

제1절 설계개선 방향 80

제2절 설계개선 절차 82

제5장 결론 89

기호설명 91

참고문헌 93

Abstract 103

부록 106

[부록 1] NFPA 58, "Storage and handling of liquefied petroleum gases", 58-25 107

[부록 2] NFPA 59, "Storage and handling of liquefied petroleum gases at utlity gas plants", 1995 ed. 59-10, Table 2-4.1.2 109

[부록 3] API Standard 2510, "Design and construction of LPG installations", 8 ed. 2001, 4, Table 1 110

[부록 4] Shock wave parameters for a spherical TNT explosion on a surface at sea level 111

[부록 5] Equations for the blast parameters functions provided in [부록 4] 112

[부록 6] Correlations for the fragment range and number of fragments 114

[부록 7] Drag coefficients for fragments 115

[부록 8] Scaled fragment range versus scaled initial distance 116

[부록 9] Effect of explosion overpressure[21] 117

[부록 10] Effects of thermal radiation[81] 118

[부록 11] Substance and intensity of thermal raciation flux[76] 119

[부록 12] BLEVE의 폭풍 과압의 위험성평가 결과 120

[부록 13] 비산물 위험성평가 결과 125

[부록 14] 화구의 복사열 위험성평가 결과 126

표목차

〈Table 2.1〉 Conversion from probits to probabiit(%)[21] 28

〈Table 3.1〉 Chemical and physical properties of propane 30

〈Table 3.2〉 Storage condition of propane 31

〈Table 3.3〉 Estimation of scenario with seaction distance and capacity(1/4) 32

그림목차

[Fig. 3.1] Estimation of accident scenario numbering 31

[Fig. 3.2] Variation of overpressure with separation distance (Propane 50%) 41

[Fig. 3.3] Variation of overpressure with separation distance (Propane 60%) 42

[Fig. 3.4] Variation of overpressure with separation distance (Propane 70%) 42

[Fig. 3.5] Variation of overpressure with separation distance (Propane 80%) 43

[Fig. 3.6] Variation of overpressure with separation distance (Propane 90%) 43

[Fig. 3.7] Variation of probability with wetted capacity at branch point(SN[3.0-1.9-All] & SN[7.6-1.9-All] 44

[Fig. 3.8] Variation of probability with wetted capacity at branch point(SN[7.6-7.6-All] & SN[15.0-7.6-All] 45

[Fig. 3.9] Variation of probability with wetted capacity at branch point(SN[15.0-13.7-All] & SN[23.0-11.7-All] 46

[Fig. 3.10] Variation of probability with wetted capacity at branch point(SN[23.0-265.2-All] & SN[30.0-265.2-All] 47

[Fig. 3.11] Variation of probability with wetted capacity at branch point(SN[30.0-3410-All] & SN[38.0-341.0-All] 48

[Fig. 3.12] Variation of probability with wetted capacity at branch point(SN[38.0-454.6-AIl] & SN[61.0-454.6-All] 49

[Fig. 3.13] Variation of probability with wetted capacity at branch point(SN[610-757.7-All] & SN[910-757.7-All] 50

[Fig. 3.14] Effect of fragment with separation distance 53

[Fig. 3.15] Variation of thermal radiation flux with separation distance (Propane 50%) 64

[Fig. 3.16] Variation of thermal radiation flux with separation distance (Propane 60%) 65

[Fig. 3.17] Variation of thermal radiation flux with separation distance (Propane 70%) 65

[Fig. 3.18] Variation of thermal radiation flux with separation distance (Propane 80%) 66

[Fig. 3.19] Variation of thermal radiation flux with separation distance (Propane 90%) 66

[Fig. 3.20] Variation of thermal radiation flux with wetted capacity at brach point(SN[3.0-1.9-All] & SN[7.6-19-All] 68

[Fig. 3.21]Variation of thermal radiation flux with wetted capacity at brach point(SN[7.6-7.6-AIl] & SN[15.0-7.6-All]) 68

[Fig. 3.22] Variation of thermal radiation flux with wetted capacity at brach point(SN[15.0-13.7-All] & SN[23.0-13.7-All] 69

[Fig. 3.23] Variation of thermal radiation flux with wetted capacity at brach point(SN[23.0-265.2-AIl] & SN[30.0-265.-All] 70

[Fig. 3.24] Variation of thermal radiation flux with wetted capacity at brach point(SN[30.0-3410-AIl] & SN[38.0-3410-All]) 71

[Fig. 3.25] Variation of thermal radiation flux with wetted capacity at brach point(SN[38.0-454.6-AIl] & SN[610-454.6-All] 71

[Fig. 3.26] Variation of thermal radiation flux with wetted capacity at brach point(SN[610-757.7-AIl] & SN[910-757.7-All] 72

[Fig. 4.1] Fault tree of BLEVE 81

[Fig. 4.2] Desing improvement procedure at propane storage faclity(Total) 85

(Fig. 4.3] Desing improvement procedure at propane storage faclity(Effect of Overpressue) 86

(Fig. 4.4] Desing improvement procedure at propane storage faclity(Effect of Fragment) 87

(Fig. 4.5] Desing improvement procedure at propane storage faclity(Effect of Thernal Radiation Flux) 88

초록보기

본 연구에서는 약 60년 동안 지속되어 온 NFPA 58 및 API 2510의 LPG 기준에 명시된 이격거리를 정량적 위험성평가 방법을 이용하여 BLEVE 사고 시 발생될 수 있는 과압, 복사열, 비산물의 영향에 대하여 사고 시나리오를 설정하여 평가하였다. 그리고 이와 같은 정량적 위험성 평가결과를 반영하여 안전장치, 방호벽 등과 같은 안전설비의 개선이 종합적으로 이루어질 수 있도록 저장시설의 설계개선 절차를 제시하였다.

프로판 저장시설에 대한 정량적 위험성평가 결과, BELVE에 의한 과압 영향은 동일한 이격거리에서 저장용량이 증가할수록 큰 과압이 형성 되었고, NFPA 58 기준의 이격거리 분절점에서 과압의 영향이 매우 강하게 나타남을 알 수 있었다. 또한 비산물 영향은 용량이 454.6 ㎥ 부터 형성되기 시작하여 최대 33개까지 발생하는 것으로 평가되었으며, 비산 물의 최대거리는 약 782.7 m로 전체 이격거리에서 비산물의 영향을 받는 것으로 평가되었다. 그리고 화구에 의한 복사열 영향은 NFPA 58 기준의 이격거리 분절점에서 대단히 강하게 나타남을 알 수 있었으며, 특히 AIChE 모텔과 TNO 모델을 비교해 본 결과, 화구의 형상인자를 고려하는 TNO 모델보다 AIChE 모델이 약 2.2~13.7배 크게 예측되었다.

따라서 본 연구에서 평가한 과압, 비산물, 복사열의 평가결과를 종합한 결과, NFPA 58 및 API 2510 기준의 이격거리에서 사고 시나리오 전체 범위에서 프로판 저장시설의 안전에 영향을 미치는 것으로 판단되었으며, 따라서 NFPA 58 및 API 2510 기준 검토뿐만 아니라 현재 이와 같은 기준에 의해 설치되어져 있는 시설물의 안전대책을 재검토하는 것이 바람직하다고 판단된다.

그리고 이와 같은 정량적 위험성평가를 바탕으로 설계개선 방안을 다음과 같이 4단계로 제시하였다. 즉, (1) 프로판 저장시설에 관한 법규 및 기준 검토, (2) 프로판 저장시설의 저장조건 및 안전관련 사항 파악, (3) 정량적 위험성평가(BLEVE의 과압, 비산물, 화구의 복사열), (4) 설계개선 판단의 단계에 의해 안전장치, 방호벽 등과 같은 안전설비의 개선이 종합적으로 이루어질 수 있도록 설계개선 절차를 제시하였다.

참고문헌 (80건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 『고압가스안전관리법』일부개정 2007.5.17, 법률 제8452호. 미소장
2 『산업안전보건법』일부개정 2007.5.17, 법률 제8475호. 미소장
3 (1997), 「LPG저장 설비의 안전성 평가」, 공업기술 연구소논문집. 미소장
4 『위험물안전관리법』, 일부개정 2006.9.22, 법률 제7984호. 미소장
5 부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰 소장
6 American Institute of Chemical Engineers(1994), “Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVES", American Institute of Chemical Engineers, New York. 미소장
7 Fault tree and reliability relationships for analyzing noncoherent two-state systems 네이버 미소장
8 American Institute of Chemical Engineers(1999), “Guidelines for Consequence Analysis of Chemical Releases", AIChE, New York. 미소장
9 American Institute of Chemical Engineers(1985), “Guidelines for Hazard Evaluation Procedures", New York. 미소장
10 American Petroleum Institute(2001), “Design and Construction of LPG Installations", Standard 2510, API. 미소장
11 American Petroleum Institute(1996), "Fire-Protection Considerations for the Design and Operation of Liquefied Petroleum Gas(LPG) Storage Facilities", Publication 2510A, API. 미소장
12 Association of American Railroads(1972), "Analysis of Tank Car Tub Rocketing in Accidents", Washington, DC; Association of American Railroads, AAR Report R146. 미소장
13 Association of American Railroads(1973), "Summary of Ruptured Tank Cars Involved in Past Accidents", Washington, DC; Association of American Railroads, AAR Report R130. 미소장
14 Performance assessment of underground munitions storage facilities 네이버 미소장
15 Impact of joints and discontinuities on the blast-response of responding tunnels studied under physical modeling at 1-g 네이버 미소장
16 (1983). E. P. A. Cox, P. S. Westime, J. J Kulesz, and R. A. Strehlow, " Explosion Hazards and Evaluation," New York: Elsevier. 미소장
17 Hazards from propane BLEVEs: An update and proposal for emergency responders 네이버 미소장
18 Scale effects with fire exposure of pressure-liquefied gas tanks 네이버 미소장
19 (1959), "Blast Wave from a Spherical Charge" Phys. Fluides, 2. 미소장
20 Energy Release Protection for Pressurized Systems. Part I: Review of Studies into Blast and Fragmentation 네이버 미소장
21 (1972), "Diagnostic Features of Explosion Damage", 6th International Meeting on Forensic Sciences, Edinburgh, Scotland. 미소장
22 (1998), "Risk assessment for installations where liquefied petroleum gas (LPG) is stored in bulk vessels above ground", Journal of Hazardous Materials, 20. 미소장
23 Escalation thresholds in the assessment of domino accidental events 네이버 미소장
24 (1998), "Assessment of mathematical models for fire and explosion hazards of liquefied petroleum gases", Journal of Hazardous Materials, 20. 미소장
25 (1990), "Chemical Process Safety: Fundamental with Applications", Prantice-Hall Inc., New York,. 미소장
26 A guide to the evaluation of condensed phase explosions 네이버 미소장
27 Consequence analysis in LPG installation using an integrated computer package 네이버 미소장
28 (1975), "Vulnerability Model : A Simulation System for Assessing Damage Resulting from Marine Spills", U.S. Coast Guard, CG-D-136-75 and NTIS AD-015-245. 미소장
29 Efficacy of orgotein in prevention of late side effects of pelvic irradiation: a randomized study. 네이버 미소장
30 An evaluation of the effect that the implementation of the NICE rules may have on a diagnostic imaging department for the early management of head injuries 네이버 미소장
31 Determination of reactivity and ignition behaviour of solid fuels based on combustion experiments under static and continuous flow conditions 네이버 미소장
32 (1985), "Fragment Hazards From Failures of Pressurised Liquefied Gas Vessels," IchemE Sym SerNO. 93: Assessment and control of major Hazards. 205-220. Rugby, UK: Institution of Chemical Engineers. 미소장
33 Pressure retardation of organic maturation in clastic reservoirs: a case study from the Banqiao Sag, Eastern China 네이버 미소장
34 (1983), "The Physiological and Pathological Effects of Thermal Radiation". Culcheth, UK: UK Atomic Energy Authority, SRD R275. 미소장
35 Development of a thermal energy storage model for EnergyPlus 네이버 미소장
36 (1990), "Large Scale Catastrophic Releases of Flammable Liquids" Commission of the European Communities Report, Contract No. EV4T. 0014. UK(H). 미소장
37 (2006), "THERMINATOR: Thermal heavy-ION generator", Computer Physics Communications, 174(8), 2006. 미소장
38 (1996), "Major Accident Case Studies in Chemical Process Industries", Chemical Engineering World, September. 미소장
39 Nonlinear transient response of stiffened plates to air blast loading by a superelement approach 네이버 미소장
40 Fludarabine Allows Dose Reduction for Total Body Irradiation in Pediatric Hematopoietic Stem Cell Transplantation 네이버 미소장
41 Do tree belts increase risk of explosion for LPG spheres? 네이버 미소장
42 (1996), "Loss Prevention in the Process Industries, 2nd Ed., Butter-worths, London. 미소장
43 (2006), “ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer”, International Journal of Radiation Oncology*Biology*Physics, 64(3). 미소장
44 A model-oriented approach to safety analysis using fault trees and a support system 네이버 미소장
45 Prediction of debris launch velocity of vented concrete structures under internal blast 네이버 미소장
46 The effect of prior radiation therapy for treatment of nasopharyngeal cancer on wound healing following extractions: incidence of complications and risk factors 네이버 미소장
47 Evaluating the Effect of Reducing the High-dose Volume on the Toxicity of Radiotherapy in the Treatment of Bladder Cancer 네이버 미소장
48 The design of barricades for hazardous pressure systems 네이버 미소장
49 (1988), "Fire Hazard Calculations for Large Open Hydrocarbon Fires", SFPE Handbook of Fire Protection Engineering Boston, MA: Society of Fire Protection Engineers. 미소장
50 the National Fire Protection Association (1995), "Liqufied Petroleum Gas (LPG) Code", Standard 58, NFPA. 미소장
51 the National Fire Protection Association(1995), "Storage and Handling of Liquefied Petroleum Gases at Utility Gas Plants", Standard 59, NFPA. 미소장
52 (2006), “Early European experience with the Mammo Site radiation therapy system for partial breast brachytherapy following breast conservation operation in low-risk breast cancer”, The Breast, 15(3). 미소장
53 Us regulatory requirements for blast effects from accidental explosions 네이버 미소장
54 Uncertainty quantification in the health consequences of the boiling liquid expanding vapour explosion phenomenon 네이버 미소장
55 Fault Trees vs. Event Trees in Reliability Analysis 네이버 미소장
56 Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer 네이버 미소장
57 Permission of M&M Protection Consultants (1987), "A Thirty Year Review of One Hundred of the Largest Property Damage Losses in the Hydrocarbon Chemical Industries, Chicago. 미소장
58 High dose rate brachytherapy as a boost for the treatment of localized prostate cancer. 네이버 미소장
59 (1985), "Analysis of the LPG Incident in San Juan Ixhuatepec, Mexico City, 19 Nov. 1984", Apeldoorn, The Netherlands: Netherlands Organization for Applied Scientific Research, TNO 84-0222. 미소장
60 (1986), "Consequence Models for BLEVE Incidents" Major Industrial Hazards Project: Technical Papers. D. H. Slater, E. R. Corran, and R. M. Pitblado. Sydney, Australia: Warren Centre, University of Sydney. 미소장
61 .(1988), "Quantitative Evaluation of BLEVE Hazards." 22nd Loss Prevention Symposium, March, New Orleans, LA. New York: American Institute of Chemical Engineers. 미소장
62 (2005), "Exposure of a Liquefied Gas Container to an External Fire", J. of Hazardous Materials, A122. 미소장
63 Early clinical and radiological pulmonary complications following breast cancer radiation therapy: NTCP fit with four different models 네이버 미소장
64 (1982), "Thermal Radiation Hazards from Releases of LPG from Pressurized Storage", Fire Safety Journal, 4(3). 미소장
65 (2006), "Off-site emergency scenario, a case study from a LPG Bottling Plant", Journal of Loss Prevention in the Process Industries, 19(6). 미소장
66 The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901 네이버 미소장
67 Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma 네이버 미소장
68 SFPE(2002), "The SFPE Handbook of Fire Protection Engineering", NFPA, Quincy, MA, CY. 미소장
69 (1984) “Atmospheric Transmissivity: The Effects of Atmospheric Attenuation on Thermal Radiation", Culcheth, UK: UK Atomic Energy Authority, SRD R304. 미소장
70 The characterization and evaluation of accidental explosions 네이버 미소장
71 Biological response to blast overpressure: A summary of modeling 네이버 미소장
72 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber 네이버 미소장
73 (2004), "Risk analysis of industrial structures under extreme transient loads", Soil Dynamics and Earthquake Engineering, 24(6). 미소장
74 (1989), "Dynamic elastic and plastic deformation of double-walled cylindrical storage tanks", International Journal of Impact Engineering, 8(4). 미소장
75 TNO(1979), “Methods for the Calculation of the Physical Effects of the Escape of the Dangerous Materials: Liquids and Gases (The Yellow Book)". Apeldoorn, The Netherlands: Netherlands Organization for Applied Scientific Research. 미소장
76 TNO(1992), “Methods for the Determination of Possible Damage to People and Objects Resuting from Release of Hazardous Materials," The Netherlands: The Netherlands Organization of Applied Scientific Research. 미소장
77 Protecting people against radiation exposure in the event of a radiological attack 네이버 미소장
78 Estimating the impacts of L.P.G. spills during transportation accidents 네이버 미소장
79 Reliability of a k-out-of-n warm-standby system 네이버 미소장
80 World Bank (1988), "Techniques for Assessing Industrial Hazards", Washington, DC; The World Bank, Technical Report No. 55. 미소장