본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

감사의 글

목차

국문요약 15

제1장 서론 18

제2장 이론적 배경 20

2.1. 소자의 스케일링(스케일일) (Scaling(Sacling)) 20

2.1.1. MOSFET의 스케일링 20

2.1.2. 실리콘산화막의 스케일링 30

2.2. 고유전박막 (high-k) 42

2.2.1. 게이트 유전막재료로서의 고려사항 42

2.2.2. ZrO₂와 HfO₂ 박막의 물리적 성질 61

제3장 ALD 법으로 성장시킨 HfO₂ 및 Hf silicate 박막의 미세구조 및 물리적 특성 71

3.1. 서론 71

3.2. 실험 74

3.2.1. 실험 장치 74

3.2.2. 실험 방법 83

3.3. ALD로 성장시킨 HfO₂와 Hf silicate 박막의 미세 구조 93

3.3.1. Hf 및 Si 전구체의 선택 93

3.3.2. ALD로 성장시킨 HfO₂ 증착 특성 97

3.3.3. ALD로 성장시킨 HfO₂ 박막의 후속 열처리에 따른 물성 변화 110

3.4. ALD로 성장시킨 Hf silicate 박막 특성연구 117

3.4.1. Hf-silicate 박막의 Si조성에 따른 물리적 특성 117

3.4.2. Hf silicate 박막의 Si조성에 따른 전기적 특성 132

3.5. 결론 140

제4장 ALD 법으로 성장시킨 Hf silicate박막의 후속 열처리에 따른 미세구조 및 물리적, 전기적 특성 연구 142

4.1. 서론 142

4.2. 실험방법 145

4.3. 후속 열처리에 따른 Hf silicate 박막의 미세구조 변화 147

4.4. 후속 열처리에 따른 Hf-ailicate 박막의 전기적 특성 변화 157

4.5. 결론 166

참고 문헌 168

ABSTRACT 186

List of Tables

Table 1. History of Development in Semiconductor 24

Table 2. The 2006 Edition of ITRS; Thermal & Thin Film, Doping Technology Requirements 26

Table 3. Scaling Factors Associated with Important Device Parameters 28

Table 4. Thermodynamic Stability of Binary Oxides in Contact with Si 54

Table 5. Enthalpy Changes for the Potential Chemical Reactions across ZrO₂/Si, ZrO₂/SiO₂, HfO₂/Si, and HfO₂/SiO₂ Interfaces 73

Table 6. Characteristic features of ALD, their implications on the film growth and the consequent practical advantages. 79

Table 7. Technology Comparisons between Conventional Furnace and RTP 82

Table 8. Clausisus -Clapeyron equations for Hf precursors. 95

Table 9. Clausisus-Clapeyron equations for Si precursors 96

Table 10. Thickness of HfO₂ film measuried by HR-TEM and spectroscopic ellipsometer 102

Table 11. EOT and dielectric constant of various thick-HfO₂ film measuried by C-V meter. 108

Table 12. EOT and dielectric constant of 5 nm-thick-HfO₂ film measuried by C-V meter as annealing temperature increases 116

Table 13. The composition of 5 nm-thick-Hf silicate film calcuated by XPS 122

Table 14. EOT and dielectric constant of 5 nm-thick-Hf silicate film measuried by C-V meter 139

Table 15. EOT and dielectric constant of 5 nm-HS51 film measuried by C-V meter as annealing temperature increases 161

Table 16. EOT and dielectric constant of 5 nm-HS11 film measuried by C-V meter as annealing temperature increases 163

Table 17. EOT and dielectric constant of 5 nm-HS15 film measuried by C-V meter as annealing temperature increases 165

List of Figures

Fig. 2-1. Moore's Law, the doubling of transistors every couple of years, has been maintained, and still holds true today. 25

Fig. 2-2. Cross-sectional view of the basic p-bulk (n-channel) MOSFET structure. 27

Fig. 2-3. Band diagram and FET. 29

Fig. 2-4. Structure of SiO₂ The 6-membered ring structure of SiO₂ is shown conceptually on the right. 34

Fig. 2-5. Model of silicon oxidation. 35

Fig. 2-6. (a) Conceptual atomic level picture of the Si/SiO₂ interface showing possible structural origins of Qf and Qit, and (b) 4 types of charges associated with the SiO₂/Si system.(이미지참조) 40

Fig. 2-7. (a) Gate leakage upon for various oxide thickness and (b) EOT as a function of physical oxide thickness. 41

Fig. 2-8. Band offset calculations for a number of potential high-k gate dielectric materials. 48

Fig. 2-9. Correlation between Eg, k, and leakage current. 49

Fig. 2-10. Ellingham Diagram for formation of metal oxide. 53

Fig. 2-11. Ternary phase diagrams for (a) Ta-Si-O, (b) Ti-Si-O, and (c) Zr-Si-O compounds. 55

Fig. 2-12. Three types of growth modes : (a) Frank-van der Merwe groth mode, (b) Volmer-Weber growth mode, and (c) Stranski-Kratanov growth mode. 66

Fig. 2-13. Leakage current at 1MV/cm and k versus temperature of post-sputtering anneal for Ta205 films. 69

Fig. 2-14. Fluorite structure and its (110) plane. 70

Fig. 3-1. A schematic diagram of the basic principle of the ALD processing. 78

Fig. 3-2. A processing window of the ALD process. 80

Fig. 3-3. Schematic view of (a) vertical furnace and (b) RTP. 81

Fig. 3-4. Rotation type spectroscopic ellipsometer. 88

Fig. 3-5. Schematic flow chart for TEM specimen preparation. 89

Fig. 3-6/3-7. Clausius-Clapeyron plots of Hf[N(CH₃)(C2H5)]₄ (TEMAHf) and Hf[N(C2H5)₂]₄ (TDEAHf). Vapor pressure of Hf[N(CH₃)(C2H5)]₄, and Hf[N(C2H5)₂]₄ are ~0.5Torr, and ~0.1 Torr at the temperature of 85℃, respectively.(이미지참조) 95

Fig. 3-7/3-8. Clausius-Clapeyron plots of SiH[N(CH₃)₂]₃, Si[N(CH₃)₂]₄, and SiH[N(C2H5)₂]₃. Vapor pressure of SiH[N(CH₃)₂]₃ are ~25 Torr at the temperature of 50℃.(이미지참조) 96

Fig. 3-8/3-9. Thickness of HfO₂ films measured by spectroscopic ellipsometer 100

Fig. 3-9/3-10. HR-TEM images of as-deosited. HfO₂ ; (a) 2 nm, (b) 3 nm, (c) 4 nm, (d) 5nm, and (e) 8nm 101

Fig. 3-10/3-11. XPS wide scan spectrum of HfO₂ and SiO₂ film 104

Fig. 3-11/3-12. C-V characterizatics upon film thickness of HfO₂ 107

Fig. 3-12/3-13. EOT of HfO₂ upon the thickness of HfO₂ increased 109

Fig. 3-13/3-14. XRD spectra of as-deposited ~8 nm thick HfO₂ at various annealing temperature 112

Fig. 3-14/3-15. HR-TEM image of ~5 nm thick HfO₂ at various annealing temperature ; (a) as~dep., (b) annealing at 600℃ and (c) at 800℃ 113

Fig. 3-15/3-16. Capacitance-Voltage Curve and C/Co of ~5 nm thick HfO₂at various annealing temperature ; (a) Capacitance-Voltage Curve, and (b) C/Co-Voltage Curve 115

Fig. 3-16/3-17. XPS wide scan spectra of various compositional Hf silicate film 120

Fig. 3-17/3-18. Cycle ratio vs. Composition of various Hf silicate films 121

Fig. 3-18/3-19. (a) Hf 4f and (b) Si 2p photoelectron spectra with various compositional Hf silicate 123

Fig. 3-19/3-20. refractive index and extinction coefficient spectra with various compositional Hf silicate measured by spectroscopic ellipsometer 125

Fig. 3-20/3-21. HR-TEM image of as-depoited HS51 ; (a) 3 nm thick. (b) 4 nm thick. (c) 5 nm thick. and (d) 8 nm thick 127

Fig. 3-21/3-22. HR-TEM image of as-depoited HS31 ; (a) 3 nm thick. (b) 4 nm thick. (c) 5 nm thick. and (d) 8 nm thick 128

Fig. 3-22/3-23. HR-TEM image of as-depoited HS11 ; (a) 3 nm thick. (b) 4 nm thick. (c) 5 nm thick. and (d) 8 nm thick 129

Fig. 3-23/3-24. HR-TEM image of as-depoited HS13 ; (a) 3 nm thick. (b) 4 nm thick. (c) 5 nm thick. and (d) 8 nm thick 130

Fig. 3-24/3-25. HR-TEM image of as-depoited HS15 ; (a) 3 nm thick. (b) 4 nm thick. (c) 5 nm thick. and (d) 8 nm thick 131

Fig. 3-25/3-26. C-V characterizatics upon composition of Hf silicate ; (a) HS51, (b) HS11, and (c) HS15 135

Fig. 3-26/3-27. EOT of various Hf silicates upon the thickness increased 136

Fig. 3-27/3-28. Dielectric constant vs. composition of Hf silicates 137

Fig. 3-28/3-29. Capacitance-voltage curve of ~5 nm thickness Hf silicates 138

Fig. 4-1. Schmatic of passible issues when high k dielectric gats stack used 144

Fig. 4-2. XRD spectra of Hf silicate with annealing temperature ; (a) HfO₂, (b) HS51, (c) HS31, (d) HS11, (e) HS13, and (f) HS15 150

Fig. 4-3. NEXAFS O k edge absorption spectra of Hf silicate with annealing temperature ; (a) HfO₂, (b) HS51, (c) HS31, (d) HS11, (e) HS13, and (f) HS15 151

Fig. 4-4. HR-TEM image of ~5 nm thick HS51 at various annealing temperature ; (a) as-dep., (b) annealing at 700℃, (c) at 800℃ and (d) at 900℃ 152

Fig. 4-5. HR-TEM image of ~5 nm thick HS11 at various annealing temperature ; (a) as-dep., (b) annealing at 600℃, (c) at 800℃ and (d) at 900℃ 153

Fig. 4-6. HR-TEM image of ~5 nm thick HS11 annealed at 900℃ ; (a) High resolution image and (b) low-magnitude image 154

Fig. 4-7. (a) Hf 4f and (b) O 1s photoelectron spectra of HS11 with annealing temperature 155

Fig. 4-8. HR-TEM image of ~5 nm thick HS15 at various annealing temperature ; (a) as-dep., (b) annealing at 700℃, (c) at 800℃ and (d) at 900℃ 156

Fig. 4-9. Capacitance-Voltage Curve of ~5 nm thick HS15 at various annealing temperature 160

Fig. 4-10. Capacitance-Voltage Curve of ~5 nm thick HS11 at various annealing temperature 162

Fig. 4-11. Capacitance-Voltage Curve of ~5 nm thick HS15 at various annealing temperature 164

참고문헌 (126건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 The electronic structure at the atomic scale of ultrathin gate oxides 네이버 미소장
2 Evaluating the minimum thickness of gate oxide on silicon using first-principles method 네이버 미소장
3 Gate oxides in 50 nm devices: thickness uniformity improves projected reliability 네이버 미소장
4 Ultimate limit for defect generation in ultra-thin silicon dioxide 네이버 미소장
5 "Boron diffusion and penetration in ultrathin oxide with poly-Si gate", IEEE Electron Device Lett. 1 9, 291 (1998) 미소장
6 Effects of Gate Depletion and Boron Penetration on Matching of Deep Submicron CMOS Transistors 네이버 미소장
7 Gate Quality Doped High K Films for CMOS Beyond 100nm: 3-10nm AlO with Low Leakage and Low Interface States 네이버 미소장
8 High-resolution depth profiling in ultrathin Al2O3 films on Si 네이버 미소장
9 "High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10Å", Tech. Dig. VLSI Symp. 2000, p. 16. 미소장
10 "Characteristics of Al2O3 gate dielectric prepared by atomic layer deposition for giga scale CMOS DRAM devices", Tech. Dig. VLSI Symp. 2000, p.46. 미소장
11 "Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric ", Tech. Dig. Int. Electron Devices Meet. 2000, p. 645. 미소장
12 Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics 네이버 미소장
13 Interfacial reactions in the thin film Y 2O 3 on chemically oxidized Si(100) substrate systems 네이버 미소장
14 Temperature dependence of the properties of heteroepitaxial Y2O3 films grown on Si by ion assisted evaporation 네이버 미소장
15 High ε gate dielectrics Gd2O3 and Y2O3 for silicon 네이버 미소장
16 Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics 네이버 미소장
17 "Epitaxial praseodymium oxide: a new high-k dielectric", Tech. Dig. Int. Electron Devices Meet. 2000, p. 653. 미소장
18 Does Chemistry Really Matter in the Chemical Vapor Deposition of Titanium Dioxide? Precursor and Kinetic Effects on the Microstructure of Polycrystalline Films 네이버 미소장
19 "Zirconium oxide based gate dielectrics with equivalent oxide thickness of less than 1.0 nm and performance of submicron MOSFET using a nitride gate replacement process", Mater. Res. Soc. Symp. Proc. 5 67, 355 (1999). 미소장
20 "Sub-quarter micron CMOS process for TiN-gate MOSFETs with TiO2 gate dielectric formed by titanium oxidation", Tech. Dig. VLSI Symp. 1999, p. 133. 미소장
21 "MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si ", IEEE Trans. Electron Devices ED-33 , 442 (1986). 미소장
22 MOSCAP and MOSFET Characteristics Using ZrO~2 Gate Dielectric Deposited Directly on Si 네이버 미소장
23 "MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics " Tech. Dig. Int. Electron Devices Meet. 2000, p. 27. 미소장
24 Low Temperature Chemical Vapor Deposition of ZrO[sub 2] on Si(100) Using Anhydrous Zirconium (IV) Nitrate 네이버 미소장
25 A β-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon 네이버 미소장
26 Thermal decomposition of ZrO2/SiO2 bilayer on Si(001) caused by void nucleation and its lateral growth 네이버 미소장
27 Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing 네이버 미소장
28 "Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric", IEEE Electron Device Lett. 2 1, 181 (2000). 미소장
29 "High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode", Tech. Dig. Int. Electron Devices Meet. 2000, p. 31. 미소장
30 Influence of annealing condition on the properties of sputtered hafnium oxide 네이버 미소장
31 Dielectric property and thermal stability of HfO2 on silicon 네이버 미소장
32 CMOS Metal Replacement Gate Transistors Using Tantalum Pentoxide Gate Insulator 네이버 미소장
33 Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies 네이버 미소장
34 "MOS transistors with stacked SiO2-Ta2O5-SiO2 gate dielectrics for giga-scale integration of CMOS technologies", IEEE Electron Device Lett. 1 9, 423 (1998). 미소장
35 Crystalline Oxides on Silicon - Alternative Dielectrics for Advanced Transistor Technologies 네이버 미소장
36 Properties of Epitaxial SrTiO~3 Thin Films Grown on Silicon by Molecular Beam Epitaxy 네이버 미소장
37 Ion Transport Phenomena in Insulating Films 네이버 미소장
38 Metal-nitride-oxide-silicon field-effect transistors, with self-aligned gates 네이버 미소장
39 Silicon gate technology 네이버 미소장
40 "Design and Characteristics of the Lightly Doped Drain-Source(LDD) Insulated Gate Field-Effect Transistor". IEEE Trans. Ed-27, 1359 (1980). 미소장
41 "Cramming More Components Onto Integrated Circuits," Electronics Magazine. 8, 114 (1965). 미소장
42 See The International Technology Roadmap for Semiconductors, Semiconductor Industry Association; see also http: //public.itrs.net/ for the most recent updates (1999). 미소장
43 Submicron short channel effects due to gate reoxidation induced lateral interstitial diffusion 네이버 미소장
44 "Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions", IEEE J. SC-9, 256 (1974). 미소장
45 "Generalized Scaling Theory and Its Application to a 1/4 Micrometer MOSFET Design". IEEE Trans. ED-31 , 452 (1984). 미소장
46 Gate Dielectrics and MOS ULSIs (Springer, New York, 1997). 미소장
47 IEEE Trans. Electron Device, ED-1 2, p.97, 1965. 미소장
48 General Relationship for the Thermal Oxidation of Silicon 네이버 미소장
49 SILICON VLSI TECHNOLOGY (Prentice Hall, New Jersey, 2000). 미소장
50 A high‐resolution electron microscopy study of the Si‐SiO 2 interface 네이버 미소장
51 Model for Radiation‐Induced Charge Trapping and Annealing in the Oxide Layer of MOS Devices 네이버 미소장
52 Oxide thickness dependence of electron‐induced surface states in MOS structures 네이버 미소장
53 "Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon". IEEE Trans. Elec. Dev., vol. ED-27, p. 606, (1980). 미소장
54 Electronic Properties of the Si/SiO~2 Interface from First Principles 네이버 미소장
55 Low Leakage, Ultra-Thin Gate Oxides for Extremely High Performance sub-100nm nMOSFETs 네이버 미소장
56 Progress Toward 10nm CMOS Devices 네이버 미소장
57 The Ballistic Nano-Transistor 네이버 미소장
58 "Ultra thin gate SiO2 technology". Proc.-Electrochem. Soc. 2000-2, p. 3. 미소장
59 "Limits of gateoxide scaling in nano-transistors", VLSI Tech. Dig. 2000, p. 90. 미소장
60 Tech. Dig. VLSI Symp. 2000, p. 174; R. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, "Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors", Tech. Int. Electron Devices Meet. 2000, p. 45. 미소장
61 Minimization of Interfacial Microroughness for 13 - 60 � Ultrathin Gate Oxides 네이버 미소장
62 In situ Si flux cleaning technique for producing atomically flat Si(100) surfaces at low temperature 네이버 미소장
63 "Quantum mechanical modeling of electron tunneling current from the inversion layer of ultra-thinoxide nMOSFET's " IEEE Electron Device Letter, 1997, p. 209. 미소장
64 Principles of Electrical Engineering Materials and Devices, 2nd Ed. (McGraw-Hill, New York, 2002). 미소장
65 INTRODUCTION TO CERAMICS, 2nd Ed. (John Wiely & Sons, Singapore, 1991). 미소장
66 Dielectric polarizabilities of ions in oxides and fluorides 네이버 미소장
67 Physics of Semiconductor Devices, 2nd ed.(Wiley, New York, 1981). 미소장
68 New York: The Politics of Urban Regional Development by Michael N. Danielson; 네이버 미소장
69 Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate 네이버 미소장
70 Band offsets of wide-band-gap oxides and implications for future electronic devices 네이버 미소장
71 Circuit Requirement and Integration Challenges of Thin Gate Dielectrics for Ultra Small MOSFETs 네이버 미소장
72 Thermodynamic considerations in refractory metal‐silicon‐oxygen systems 네이버 미소장
73 Res 네이버 미소장
74 Reactions of Zr thin films with SiO 2 substrates 네이버 미소장
75 Thermodynamics in materials science (McGraw-Hill, Singapore, 1993) 미소장
76 Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973). 미소장
77 Thermodynamic Properties of Elements and Oxides (U.S. Dept. of Interior, Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington, D.C., 1982). 미소장
78 Silicides for VLSI Applications (Academic, New York, 1983). 미소장
79 Void formation on ultrathin thermal silicon oxide films on the Si(100) surface 네이버 미소장
80 Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics 네이버 미소장
81 "Effect of Oxide Defect Structure on the Electrical Properties of ZrO2". J. Am. Chem. Soc. 55, 439 (1972). 미소장
82 Low Temperature Chemical Vapor Deposition of ZrO[sub 2] on Si(100) Using Anhydrous Zirconium (IV) Nitrate 네이버 미소장
83 Hafnium and zirconium silicates for advanced gate dielectrics 네이버 미소장
84 "80 nm polysilicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications ", Tech. Dig. Int. Electron Devices Meet. 2000, p. 223. 미소장
85 CMOS Metal Replacement Gate Transistors Using Tantalum Pentoxide Gate Insulator 네이버 미소장
86 Zirconium Oxide Based Gate Dielectrics with Equivalent Oxide Thickness of Less Than 1.0nm and Performance of Submicron MOSFET using a Nitride Gate Replacement Process 네이버 미소장
87 "Electrical properties of heavily doped polycrystalline silicon-germanium films", IEEE Trans. Electron Devices 41, 228 (1994). 미소장
88 "Highly reliable poly-SiGe/amorphous-Si gate CMOS", Tech. Dig. Int. Electron Devices Meet. 2000, p.445. 미소장
89 Variation in the fixed charge density of SiO[sub x]/ZrO[sub 2] gate dielectric stacks during postdeposition oxidation 네이버 미소장
90 Structure and stability of ultrathin zirconium oxide layers on Si(001) 네이버 미소장
91 Crystalline zirconia oxide on silicon as alternative gate dielectrics 네이버 미소장
92 Amorphous lanthanide-doped TiOx dielectric films 네이버 미소장
93 Field effect transistors with SrTiO3 gate dielectric on Si 네이버 미소장
94 Properties of Epitaxial SrTiO~3 Thin Films Grown on Silicon by Molecular Beam Epitaxy 네이버 미소장
95 (ed.), Binary Alloy Phase Diagrams (V.1.Materials Park, Ohio:ASM International, 1990). 미소장
96 Mechanisms for success or failure of diffusion barriers between aluminum and silicon 네이버 미소장
97 Metal/metal‐oxide interfaces: A surface science approach to the study of adhesion 네이버 미소장
98 Prediction of phase formation sequence and phase stability in binary metal‐aluminum thin‐film systems using the effective heat of formation rule 네이버 미소장
99 Thin film Phenomenon (Robert E. Krieger Publishing Company, Malabar, Fla., 1985). 미소장
100 엔지니어링 세라믹스 (반도 출판사, 1990). 미소장
101 Influence of substrate temperature on atomic layer growth and properties of HfO 2 thin films 네이버 미소장
102 "Crystal Structure and Equation of State of Cotunnite-Type Zirconia". J. Am. Ceram. Soc. 78, 445 (1995) 미소장
103 "High-density ZrO2 and HfO2: Crystalline structures and equations of state", Phys. Rev. B 5 9, 8467 (1999). 미소장
104 Exchange-biasing mechanism in La 2 / 3 Ca 1 / 3 MnO 3 / La 1 / 3 Ca 2 / 3 MnO 3 multilayers 네이버 미소장
105 Growth and structure control of HfO2−x films with cubic and tetragonal structures obtained by ion beam assisted deposition 네이버 미소장
106 "High temperature stability in lanthanum and zirconia-based gate dielectrics", J. Appl. Phys. 9 0, 3476 (2000). 미소장
107 "Oxygen exchange and transport in thin zirconia films on Si(100)", Phys. Rev. B 6 2, 290 (2000). 미소장
108 Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) 네이버 미소장
109 Advanced Inorganic Chemistry (Wiley, New York, 2000). 미소장
110 Thermodynamic stability of high- K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2 네이버 미소장
111 "Special points for Brillouin-zone integrations", Phys. Rev. B 13 , 5188 (1976). 미소장
112 Thermodynamic Data of Pure Substances, 3rd ed. (VCH, Weinheim, 1995). 미소장
113 Ed., VLSI Technology, 2nd ed. (McGraw Hill, New York, (1988). 미소장
114 Appl. Phys. Lett. 82, 106 (2003). 미소장
115 Electorchem. Solid-State Lett. 8, F51 (2005). 미소장
116 J. Appl. Phys. 97, 124107 (2005). 미소장
117 Solid State Technol. 46, 45 (2003). 미소장
118 Appl. Phys. Lett. 85, 5953 (2004). 미소장
119 Electorchem. Solid-State Lett. 7, F42 (2004). 미소장
120 Electrochem. Solid-State Lett. 8, G215 (2005). 미소장
121 Introduction to Ceramics, 2nd Edition (Wiley, New York, 1976). 미소장
122 Accepted to Appl. Phys. Lett. (2004). 미소장
123 Appl. Phys. Lett. 82, 106 (2003). 미소장
124 Introduction to Solid State Physics (Wiley, New York, 1986), p 370 미소장
125 Appl. Phys. Lett. 77, 2912 (2000). 미소장
126 Tech. Dig. Int. Electron Devices Meet. 2003, 797 (2003). 미소장