본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

List of Abbreviations 8

Chapter 1. Introduction 17

Chapter 2. Theoretical Background 19

2.1. Introduction to Hydrogels 19

2.2. Fundamentals of Hydrogels 20

2.2.1. Classification 20

2.2.2. Preparation 22

2.2.3. Properties 23

2.3. Medical Applications of Hydrogels 25

2.3.1. Lubricant 25

2.3.2. Contact Lens 26

2.3.3. Dressing 30

2.4. Pharmaceutical Applications of Hydrogels 31

2.4.1. Drug Delivery System 31

2.5. Future Perspectives 35

2.5.1. Immunoisolation(Immunosiolation) 35

2.5.2. Tissue Engineering 37

2.5.3. Hydrogels of Stimuli-Responsive Polymers 39

2.5.4. Novel Hydrogels 43

2.5.5. Other Hydrogels 45

2.6. Introduction to Protein Purification 47

2.6.1. Introduction 47

2.6.2. The Protein Extract 49

2.6.3. Overview of Fractionation 51

2.6.3.1. Precipitation 51

2.6.3.2. Electrophoresis 54

2.6.3.3. Chromatography 57

2.7. Immobilization Metal Ion Affinity Chromatography 59

2.7.1. Introduction 59

2.7.2. Metal Chelate Gels 65

2.7.2.1. Choice of Chromatographic Support 65

2.7.2.2. Chelating Ligand and Strength of Chelates: Capacity for Metal Ions 66

2.7.3. Factors Influencing Adsorption and Desorption 71

2.7.3.1. Chelate Structure and Metal Ions 71

2.7.3.2. Effect of Protein or Peptide Structure 74

2.7.3.3. Effect of pH, Type of Buffer, and Ionic Strength 79

Chapter 3. Purification of His-tagged Proteins Using Ni2+ -Poly(2-acetamidoacrylic acid) Hydrogel(이미지참조) 82

3.1. Introduction 82

3.2. Experimental 84

3.2.1. Materials 84

3.2.2. Synthesis of Poly(2-acetamido acrylic acid) Hydrogel 85

3.2.3. Ni2+ -Complexed PAAA Hydrogel (Ni2+-PAAA hydrogel)(이미지참조) 85

3.2.4. Swelling Ratio of Poly(2-acetamido acrylic acid) Hydrogel 87

3.2.5. Expression and Purification of His-tagged GFP 87

3.2.6. Binding and Recovery of His-tagged GFP Using Ni2+-PAAA hydrogel (His-tagged GFP/Ni2+-PAAA hydrogel)(이미지참조) 88

3.2.7. Characterization 89

3.3. Results and Discussion 89

3.4. Conclusion 97

Chapter 4. One-step Immobilization and Purification of His-tagged Enzyme Using poly(2-acetamidoacrylic acid) Hydrogel 100

4.1. Introduction 100

4.2. Experimental 102

4.2.1. Materials 102

4.2.2. Expression of Recombinant Glutamyl Aminopeptidase (His-tagged GAP) 103

4.2.3. Synthesis of Poly(2-acetamidoacrylic acid) Hydrogel 103

4.2.4. Swelling Ratio of Poly(2-acetamido acrylic acid) Hydrogel 104

4.2.5. Ni2+-Complexed PAAA Hydorgel (Ni2+-PAAA hydrogel)(이미지참조) 104

4.2.6. Purification and Immobilization of Enzyme with Ni2+-PAAA Hydrogel (His-tagged GAP/Ni2+-PAAA hydrogel)(이미지참조) 105

4.2.7. Enzyme Activity Assays 105

4.2.8. Thermal-Stability and Reusability Study of The Immobilized His-tagged GAP 106

4.3. Results and discussion 107

4.3.1. Purification and Immobilization of His-tagged Enzyme 107

4.3.2. Effect of Temperature on The Catalytic Activity and Reusability 109

4.4. Conclusion 115

Chapter 5. Site-Specific Reversible Immobilization and Purification of His-tagged Protein in poly(2-acetamidoacrylic acid) Hydrogel Beads 116

5.1. Introduction 116

5.2. Experimental 118

5.2.1. Materials 118

5.2.2. Expression and Purification of His-tagged GFP 118

5.2.3. Synthesis of Poly(2-acetamidoacrylic acid) (PAAA) Hydrogel Beads 119

5.2.4. Swelling Ratio of Poly(2-acetamido acrylic acid) Hydrogel Beads 120

5.2.5. Mechanical Properties 122

5.2.6. Ni2+-Complexed PAAA Hydrogel Beads(이미지참조) 122

5.2.7. Binding and Separation of His-tagged GFP Using Ni2+-PAAA Hydrogel Beads(이미지참조) 123

5.2.8. Purification of His-tagged GFP Using Ni2+-PAAA Hydrogel Beads(이미지참조) 123

5.2.9. Characterization 124

5.3. Results and discussion 125

5.4. Conclusion 136

Chapter 6. References 138

요약 150

List of Tables

Table 1. Classification of Hydrogels 21

Table 2. Classification of Contact Lens by U.S. FDA 29

Table 3. Formation Constants (log K) for 1: 1 Complexes of Chelating Compounds and Metal Ions. I, N-methyliminodiacetic Acid; II, N-(hydroxymethyl)iminodiacetic Acid; III, N-(hydroxyethyl)ethylenediaminetriacetic Acid 67

Table 4. Commercially Available Chromatographic Supports for IMAC 69

Table 5. Protein Structure and Choice of Metal Ion 76

Table 6. Qualitative Influence of Various Factors on the Binding of Proteins in IMAC 81

List of Figures

Figure 1. Principle of immobilized metal ion affinity chromatography (IMAC). A=linkage (spacer) group, B=chelating group, Me=metal ion, L=solvent or buffer molecule. 63

Figure 2. Postulated planar Cu2+ chelate with iminodiacetic acid as chelating group.(이미지참조) 72

Figure 3. Synthesis of the poly(2-acetamidoacrylic acid) hydrogel. 86

Figure 4. Schematic diagram and images of the PAAA hydrogel (A, B), Ni2+-PAAA hydrogel (C, D), and His-tagged GFP/Ni2+-PAAA hydrogel (E, F)(이미지참조) 90

Figure 5. Images of the His-tagged GFP bound to Ni2+-PAAA hydrogel from Confocal laser scanning microscopy (CLSM). The green fluorescence images of the His-tagged GFP /Ni2+ -PAAA hydrogel were obtained...(이미지참조) 92

Figure 6. Fluorescence spectra showing the changes in the emission intensity of His-tagged GFP in the solutions before (a) and after (b) bound with the Ni2+-PAAA hydrogel....(이미지참조) 94

Figure 7. (A) Binding of His-tagged GFP to the PAAA hydrogel with (1) and without (2) Ni2+. (B) SDS-PAGE analyses of the purified His-tagged GFP using PAAA hydrogel with (1) and without (2) Ni2+.(이미지참조) 96

Figure 8. SDS-PAGE analyses of purified His-tagged GFP using Ni2+-PAAA hydrogel directly from the cell lysates. Cell lysates (lane 1), Washing fraction of proteins treated with the buffer solution containing 40mM...(이미지참조) 98

Figure 9. Schematic diagram of the PAAA hydrogel (A), Ni2+-PAAA hydrogel (B), and His-tagged GAP/Ni2+-PAAA hydrogel (C).(이미지참조) 108

Figure 10. SDS-PAGE analysis of purified His-tagged GAP by the Ni2+-PAAA hydrogel. Lane M: molecular weight markers; lane 1: purified His-tagged GAP from the Ni2+-PAAA hydrogel with an elution buffer; lane...(이미지참조) 110

Figure 11. Detection of para-Nitroanilide (pNA) from hydrolysis of Alanyl-para-Nitroanilide (Ala-pNA) by the hydrogel-immobilized His-tagged GAP as a function of time.... 111

Figure 12. Thermal effects on the relative activities of free and immobilized enzymes. The releases of pNA by free and immobilized His-tagged GAP from Ala-pNA (0.06 mM) were monitored with the temperature... 113

Figure 13. Sustained immobilization of His-tagged GAP on the regenerated Ni2+-PAAA hydrogel. The hydrolysis of Ala-pNA by immobilized aminopeptidase was monitored at 37℃ for 1 h in 50 mM Tris-HCl (pH...(이미지참조) 114

Figure 14. Synthesis of the poly(2-acetamidoacrylic acid) hydrogel beads 121

Figure 15. Schematic diagram of the PAAA hydrogel beads (A, B), Ni2+-PAAA hydrogel bead (C, D), and His-tagged GFP/ Ni2+-PAAA hydrogel bead (E, F).(이미지참조) 126

Figure 16. Image of the His-tagged GFP bound to Ni2+-PAAA hydrogel bead from CLSM. The green fluorescence images of the His-tagged GFP/ Ni2+-PAAA hydrogel bead (70 mg, 4 mm bead) revealed progressive...(이미지참조) 127

Figure 17. Binding kinetic behaviors of His-tagged GFP to Ni2+-PAAA hydrogel beads. The concentration of His-tagged GFP was 0.55 ㎍/μl, incubated with 272 mg of the hydrogel beads at room temperature.(이미지참조) 129

Figure 18. Binding isotherm of His-tagged GFP to Ni2+-PAAA hydrogel beads. Experimental conditions: 68 mg of the hydrogel beads were applied at room temperature for 1 h.(이미지참조) 130

Figure 19. Fluorescence spectra revealed the changes in the emission intensity of His-tagged GFP in the solutions (a) and after (b) bound to Ni2+-PAAA hydrogel beads....(이미지참조) 132

Figure 20. Strain dependences of the elastic modulus (G') of the bulk hydrogel (□) and bead hydrogel (■) at room temperature. 134

Figure 21. Frequency dependences of the elastic (G') and viscous (G") modulus of the bulk hydrogel and bead hydrogel at room temperature. 135

Figure 22. (A) Purification of His-tagged GFP with Ni2+-PAAA hydrogel beads directly from cell lysates. Hydrogel beads after removing unbound His-tagged GFP (1), and eluted hydrogel beads after imidazole elution...(이미지참조) 137

초록보기

단백질 고정화와 정제는 바이오 연구에서 가장 기본이 되며 중요한 연구주제이며, 많은 연구가 진행되어 왔다. 현재 여러 단백질 정제 방법 중에서 고정화된 금속 친화성 크로마토그래피 방법이 많이 사용되고 있으며 이 방법에 의한 단백질 정제의 장점은 목적하는 단백질의 높은 회수율, 높은 단백질 선택성, 고정상 지지체의 재사용이다. 하지만 가격이 높은 단점이 있다.

본 연구에서는 단백질 정제 방법 중 고정화된 금속 친화성 크로마토그래피에 사용되는 고정상 지지체를 새로 개발하였고, 개발된 지지체를 이용하여 단백질 고정화와 정제 연구를 하였다. 개발된 지지체로 하이드로젤(hydrogel)을 이용하였다. 하이드로젤(hydrogel)은 3차원 네트워크의 폴리머 구조로 친수성기를 가짐으로 많은 양의 물을 하이드로젤 구조 내부에 함유할 수 있다. 이러한 하이드로젤의 높은 함수율은 단백질 고정화와 정제 연구에서 단백질의 변성을 보호해주는 큰 장점이 된다. 본 연구에 사용된 하이드로젤은 Poly(2-acetamidoacrylic aicd)(PAAA)로써 carboxyl group을 가지고 있어 금속이온과 착체를 형성할 수 있으며 금속이온이 착체된 하이드로젤에 histidine이 달린 단백질(Histidine-tagged green fluorescent protein)이 결합될 수 있다. 금속 착체 PAAA hydorgel과 결합된 단백질은 imidazole buffer solution을 이용하여 washing 과정을 거친 뒤 정제된 단백질로 용출해서 얻어 질 수 있다. 이렇게 정제된 단백질은 90% 이상의 순도를 나타냄을 확인하였다. 또한 이 금속 착체 PAAA hydorgel을 이용하여 효소(enzyme)의 고정화와 정제에 관한 연구에도 적용될 수 있음을 확인하였다. 마찬가지로 histidine이 달린 enzyme을 PAAA hydorgel과 결합시킨 뒤 enzyme의 활성 연구결과를 보았을 때 하이드로젤에 고정된 enzyem이 고정화 되지 않은 enzyme보다 높은 활성도를 가짐을 확인하였다. 위 연구를 진행함에 있어 PAAA hydrogel의 낮은 물성이 문제점으로 나타나서 하이드로젤의 물성을 향상시키기 위해 가교도의 변화와 광중합을 이용하여 하이드로젤 비드를 합성하였다. 하이드로젤의 가교도 변화와 광중합에 따른 함수율의 감소는 하이드로젤의 물성에 영향을 미쳐 유변학 연구에서 기존에 합성된 하이드로젤 보다 높은 물성을 나타냄을 확인하였다. 물성이 향상된 하이드로젤 비드를 사용하여 단백질 정제를 하였으며 높은 순도를 가진 정제된 단백질을 얻을 수 있었다.

따라서, 본 연구의 결과는 새로 개발된 금속 착체 PAAA hydrogel을 이용하여 단백질 정제에 사용될 수 있으며, 단백질 정제뿐만 아니라 효소(enzyme)의 고정화와 정제에도 사용될 수 있음을 확인하였다. 개발된 금속 착체 PAAA hydrogel은 단백질 정제 연구분야에서 경제적이고 유용한 연구가 될 것이다.