본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

ABSTRACT 12

I. Introduction 15

II. Literature Review 19

1. Veterinary antibiotics 19

2. Usage of veterinary antibiotics 21

3. Entering routes of veterinary antibiotics in environment 24

4. Risks of veterinary antibiotics in environment 27

4.1. Antibiotic-resistant bacteria 27

4.2. Microbial toxicity 28

4.3. Phytotoxicity 28

4.4. Toxic effects on various aquatic organisms 29

5. Decomposition techniques of veterinary antibiotics 32

6. Electron ionizing energy 35

III. Materials and Methods 40

1. Materials 40

2. Methods 42

2.1. Preparation of veterinary antibiotics and irradiation with electron ionizing energy 42

2.2. Analysis of veterinary antibiotics 42

2.3. Analysis of total organic carbon (TOC), anion and radicals 45

2.4. Microbial susceptibility of veterinary antibiotics 46

2.5. GR50 values and phytotoxicity of veterinary antibiotics on Oryza sativa L.(이미지참조) 49

IV. Results and Discussion 52

1. Degradation of veterinary antibiotics in aqueous solutions by irradiation with electron ionizing energy 52

2. Changes of total organic carbon (TOC) in aqueous solutions of veterinary antibiotics by irradiation with electron ionizing energy 61

3. Production of reactive radicals from the aqueous solutions of veterinary antibiotics by irradiation with electron ionizing energy 66

3.1. Hydroxyl radical (·OH) 67

3.2. Hydrated electron(e-aq)(이미지참조) 69

3.3. Hydrogen peroxide (H₂O₂) 70

4. Decomposition mechanism of veterinary antibiotics by irradiation with electron ionizing energy 77

4.1. Chloramphenicol 77

4.2. Ciprofloxacin 85

4.3. Oxytetracycline 94

5. Changes of microbial susceptibility of veterinary antibiotics by irradiation with electron ionizing energy 102

6. GR50 values and phytotoxicity of veterinary antibiotics on Oryza sativa L.(이미지참조) 111

6.1. GR50 values of veterinary antibiotics on Oryza sativa L.(이미지참조) 111

6.2. Phytotoxicity of veterinary antibiotics on Oryza sativa L. 119

V. Conclusion 127

VI. References 130

국문초록 147

Table 1. Usage of veterinary antibiotics in Korea 23

Table 2. The effects of antimicrobial growth promoter in relation to some broad issues of animal production 31

Table 3. Product yield in water radiolysis 39

Table 4. The characteristics of veterinary antibiotics used in this study. 41

Table 5. The summary of LC/MS analytical methods. 44

Table 6. The composition of the nutrient solution for hydroponic culture 51

Fig. 1. Routes of veterinary antibiotics entering the aquatic environment 26

Fig. 2. Radiolysis of water molecule 38

Fig. 3. Manual disk placement template for five disks on the plate. 48

Fig. 4. The chromatograms of chloramphenicol after irradiation with electron ionizing energy. 55

Fig. 5. The degradation rates of chloramphenicol by irradiation with electron ionizing energy. 56

Fig. 6. The chromatograms of ciprofloxacin after irradiation with electron ionizing energy. 57

Fig. 7. The degradation rates of ciprofloxacin by irradiation with electron ionizing energy. 58

Fig. 8. The chromatograms of oxytetracycline after irradiation with electron ionizing energy. 59

Fig. 9. The degradation rates of oxytetracycline by irradiation with electron ionizing energy. 60

Fig. 10. The removal efficiencies of TOC in aqueous solution of chloramphenicol by irradiation with electron ionizing energy. 63

Fig. 11. The removal efficiencies of TOC in aqueous solution of ciprofloxacin by irradiation with electron ionizing energy. 64

Fig. 12. The removal efficiencies of TOC in aqueous solution of oxytetracycline by irradiation with electron ionizing energy. 65

Fig. 13. The variation of hydroxyl radical (·OH) in aqueous solutions of veterinary antibiotics after irradiation with electron ionizing energy. 72

Fig. 14. EPR spectra of 4-POBN spin adducts in aqueous solutions of veterinary antibiotics after irradiation with electron ionizing energy. 73

Fig. 15. The variation of nitrate ion (NO3-), nitrite ion (NO2-) and chloride ion (Cl-) in aqueous solution of chloramphenicol after irradiation with electron ionizing energy.(이미지참조) 74

Fig. 16. The variation of hydrated electron (e-aq) in aqueous solutions of veterinary antibiotics after irradiation with electron ionizing energy.(이미지참조) 75

Fig. 17. The variation of hydrogen peroxide (H₂O₂) in aqueous solution of veterinary antibiotics after irradiation with electron ionizing energy. 76

Fig. 18. The enlarged chromatogram of chloramphenicol after 5 kGy irradiation with electron ionizing energy. 79

Fig. 19. LC/MS spectra for major products (CAP1, CAP2 and CAP3) in aqueous solution of chloramphenicol after 5 kGy irradiation with electron ionizing energy. 80

Fig. 20. LC/MS/MS spectra and proposed bond cleavages of CAP1 ([M+H] m/z 307.1). 81

Fig. 21. LC/MS/MS spectra and proposed bond cleavages of CAP2 ([M+H] m/z 291.1). 82

Fig. 22. LC/MS/MS spectra and proposed bond cleavages of CAP3 ([M+H] m/z 321.1). 83

Fig. 23. Proposed degradation products of chloramphenicol by irradiation with electron ionizing energy. 84

Fig. 24. The enlarged chromatogram of ciprofloxacin after 5 kGy irradiation with electron ionizing energy. 87

Fig. 25. LC/MS spectra for major products (CFX1, CFX2 and CFX3) in aqueous solution of ciprofloxacin after 5 kGy irradiation with electron ionizing energy. 88

Fig. 26. LC/MS/MS spectra and proposed bond cleavages of CFX1 ([M+H] m/z 330.1). 89

Fig. 27. The variation of fluoride ion (F-) in aqueous solution of ciprofloxacin after irradiation with electron ionizing energy.(이미지참조) 90

Fig. 28. LC/MS/MS spectra and proposed bond cleavages of CFX2 ([M+H] m/z 314.1). 91

Fig. 29. LC/MS/MS spectra and proposed bond cleavages of CFX3 ([M+H] m/z 263.1). 92

Fig. 30. Proposed degradation products of ciprofloxacin by irradiation with electron ionizing energy. 93

Fig. 31. The enlarged chromatogram of oxytetracycline after 1 kGy irradiation with electron ionizing energy. 96

Fig. 32. LC/MS spectra for major products (OTC1, OTC2 and OTC3) in aqueous solution of oxytetracycline after 1 kGy irradiation with electron ionizing energy. 97

Fig. 33. LC/MS/MS spectra and proposed bond cleavages of OTC1 ([M+H] m/z 447.1). 98

Fig. 34. LC/MS/MS spectra and proposed bond cleavages of OTC2 ([M+H] m/z 433.2). 99

Fig. 35. LC/MS/MS spectra and proposed bond cleavages of OTC3 ([M+H] m/z 415.2). 100

Fig. 36. Proposed degradation products of oxyetracycline by irradiation with electron ionizing energy. 101

Fig. 37. The inhibition rates of microbial activity on chloramphenicol by irradiation with electron ionizing energy. 105

Fig. 38. The comparison of microbial sensitivities on chloramphenicol by irradiation with electron ionizing energy. 106

Fig. 39. The inhibition rates of microbial activity on ciprofloxacin by irradiation with electron ionizing energy. 107

Fig. 40. The comparison of microbial sensitivities on ciprofloxacin by irradiation with electron ionizing energy. 108

Fig. 41. The inhibition rates of microbial activity on oxyteracycline by irradiation with electron ionizing energy. 109

Fig. 42. The comparison of microbial sensitivities on oxytetracycline by irradiation with electron ionizing energy. 110

Fig. 43. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 days treatment with chloramphenicol. 113

Fig. 44. The variation on shoot length of Oryza sativa L. after 7 days treatment with chloramphenicol. 114

Fig. 45. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 days treatment with ciprofloxacin. 115

Fig. 46. The variation on shoot length of Oryza sativa L. after 7 days treatment with ciprofloxacin. 116

Fig. 47. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 treatment with oxytetracycline. 117

Fig. 48. The variation on shoot length of Oryza sativa L. after 7 days treatment with oxytetracycline. 118

Fig. 49. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 days treatment with chloramphenicol GR50 (1,000㎎ L-1) irradiated electron ionizing energy.(이미지참조) 121

Fig. 50. The variation on shoot length of Oryza sativa L. after 7 days treatment with chloramphenicol GR50 (1,000㎎ L-1) irradiated electron ionizing energy.(이미지참조) 122

Fig. 51. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 days treatment with ciprofloxacin GR50 (250 ㎎ L-1) irradiated electron ionizing energy.(이미지참조) 123

Fig. 52. The variation on shoot length of Oryza sativa L. after 7 days treatment with ciprofloxacin GR50 (250 ㎎ L-1) irradiated electron ionizing energy.(이미지참조) 124

Fig. 53. The changes on shoot length of Oryza sativa L. after 0, 3 and 7 days treatment with oxytetracycline GR50 (350 ㎎ L-1) irradiated electron ionizing energy.(이미지참조) 125

Fig. 54. The variation on shoot length of Oryza sativa L. after 7 days treatment with oxytetracycline GR50 (350 ㎎ L-1) irradiated electron ionizing energy.(이미지참조) 126

초록보기

본 연구에서는 가축에 대한 사용량이 많거나 위해성이 높은 동물용 의약품 중 인체 발암 가능 물질로 사용 금지되었으나 환경 중에 검출되고 있는 chloramphenicol, 인간과 동물에 널리 사용되고 있는 ciprofloxacin 및 동물용 의약품 중 사용량이 많고 배출계수가 높은 oxytetracycline 을 제거하기 위하여 전자이온화에너지를 조사한 후 분해율과 분해산물을 확인하였다. 또한 동물용 의약품의 분해산물이 미생물과 식물에 미치는 영향을 살펴보고, 전자이온화에너지 조사기술이 수중 동물용 의약품 제거에 활용 가능성을 평가하고자 하였다.

1. 동물용 의약품 (100 ㎎ L-1)에 전자이온화에너지 1, 5 그리고 10 kGy 선량으로 조사한 결과, chloramphenicol 은 각각 32.5, 86.9 그리고 100%, ciprofloxacin 은 각각 38.0, 80.4 그리고 97.3%, oxytetracycline 은 각각 72.2, 99.2 그리고 100%가 제거되었다. Chloramphenicol 과 ciprofloxacin 은 선량에 따른 분해율이 비슷하였으며, oxytetracycline 은 1 kGy 에서도 분해율이 높았고 5 kGy 에서는 대부분 제거되었다. 따라서 전자이온화에너지는 수중 동물용 의약품을 제거하는데 효과적인 것으로 판단된다.

2. 전자이온화에너지 10 kGy 조사시 chloramphenicol, ciprofloxacin 및 oxytetracycline 은 대부분 제거된 반면, 총유기탄소는 각각 17.1, 53.1 그리고 28.3% 감소하는 것으로 나타났다. 이는 안정된 구조를 가지고 있는 항생물질이 전자이온화에너지에 의해 C0₂, H₂O 그리고 NH₃와 같은 저분자 물질로 무기화되기 보다는 다른 유기화합물로 전환되었음을 의미한다.

3. 동물용 의약품 수용액에 전자이온화에너지를 조사한 결과, hydrogen radical (·OH), hydrate electron (e-aq) 및 hydrogen peroxide (H₂O₂)이 생성되었다. 반응성이 가장 높은 radical 인 hydroxyl radical (·OH)과 분자생성물인 hydrogen peroxide (H₂O₂)는 chloramphenicol 에서 가장 많이 생성되었으며, hydrate electron (e-aq)는 ciprofloxacin 에서 높게 나타났다. 생성된 라디칼 모든 물질에서 유사한 수준이었다.

4. 전자이온화에너지를 조사한 후 LC/MS 와 LC/MS/MS 분석 결과, chloramphenicol 은 CAP1([M+H]m/z307.1), CAP2([M+H]m/z291.1), 및 CAP3([M+H]m/z321.1)의 분해산물을 생성하였다. Ciprofloxacin 은 CFX1([M+H]m/z330.2), CFX2([M+H]m/z314.2), 및 CFX3([M+H]m/z263.1)의 분해산물을, oxytetracycline 은 OTC1([M+H]m/z447.2), 0TC2([M+H]m/z433.2) 및 0TC3([M+H]m/z415.2)의 분해산물을 생성하였다.

5. 동물용 의약품 수용액에 전자이온화에너지를 조사한 후 Escherichia coli, Pseudomonas putida 그리고 Bacillus subtilis에 대한 활성을 비교한 결과, 미생물에 대한 활성 감소율은 각각의 의약품의 분해율과 유사하였다. 또한 동물용 의약품이 분해되면서 생성된 분해산물이 본 연구에서 대상으로 하는 미생물에 대해 독성은 나타나지 않았다.

6. 동물용 의약품이 벼의 지상부 길이 생장에 50% 영향을 끼치는 농도 (GR50)를 조사한 결과, chloramphenicol, ciprofloxacin 그리고 oxytetracylcine 에 대한 GR50 값은 각각 1,000, 250 그리고 350 ㎎ L-1로 나타났다. 또한 GR50 값을 기준으로 하여 전자이온화에너지를 조사한 후 벼의 생육을 조사한 결과, 전자이온화에너지가 조사된 GR50 값 처리구의 벼 지상부 길이 생장은 전자이온화에너지가 조사되지 않은 GR50 값 처리구보다 약간 증가하였다. 이것은 높은 농도의 동물용 의약품이 전자이온화에너지 10 kGy 에서 완전히 제거되지 않아 잔류된 동물용 의약품에 의하여 벼의 생장이 저해된 것으로 판단된다. 따라서 높은 농도의 동물용 의약품을 제거하기 위해서는 더 높은 선량의 전자이온화에너지가 필요할 것으로 판단된다.

본 연구 결과, 전자이온화에너지는 수중 동물용 의약품 제거에 효과적인 것으로 나타났다. 따라서 전저이온화에너지 조사기술은 수생태계에 존재하는 동물용 의약품 처리에 유용할 것으로 판단된다.

참고문헌 (100건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Comparative study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions 네이버 미소장
2 2004. Treatment of textile wastewater by advanced oxidation processes-a review. Global Nest: the Int.6: 222-230. 미소장
3 Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water 네이버 미소장
4 Antibiotic susceptibility testing by a standardized single disk method. 네이버 미소장
5 Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water 네이버 미소장
6 Ecotoxicity evaluation of selected sulfonamides 네이버 미소장
7 Detection and quantitation of chloramphenicol by competitive enzyme-linked immunoassay. 네이버 미소장
8 LC/MS/MS and LC/NMR for the Structure Elucidation of Ciprofloxacin Transformation Products in Pond Water Solution 네이버 미소장
9 Potential enzyme toxicity of oxytetracycline to catalase 네이버 미소장
10 Toxic interaction mechanism between oxytetracycline and bovine hemoglobin 네이버 미소장
11 Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO 2 induced by UV, γ-ray and electron beams 네이버 미소장
12 Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron 네이버 미소장
13 Ecotoxicity of Chloramphenicol and Hg Acting on the Root Elongation of Crops in North China 네이버 미소장
14 2008. Toxic effect of inorganic arsenite [As(Ⅲ)] on metabolic activity of Bacillus subtilis by combined methods. Curr. Microbiol. 57: 258-263. 미소장
15 2006. Part Ⅲ:Environmental applications. In: Chmielewski, A. G., Kang, C. M., Kang, C.S. and Vujic, J. L. (editor). Radiation technology - Introduction to industrial and environmental applications. Seoul National University Press, Seoul,Korea. p. 233-260. 미소장
16 Radiolytic Decomposition of Various Antibiotics by Ionizing Energy 네이버 미소장
17 Degradation of ampicillin in pig manure slurry and an aqueous ampicillin solution using electron beam irradiation 네이버 미소장
18 Mass spectrometry and Web 2.0 네이버 미소장
19 Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica 네이버 미소장
20 Radiolysis of aqueous 4-nitrophenol solution with Al 2O 3 or TiO 2 nanoparticles 네이버 미소장
21 Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity 네이버 미소장
22 Imaging of photo-oxidative stress responses in leaves 네이버 미소장
23 Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents. 네이버 미소장
24 Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities 네이버 미소장
25 2011. ChapterⅡ Facility, instruments and safety: 2. Electron beam irradiation facility. In: Yoo, B. D. (editor). Radiation technology and its applications. Korea Atomic Energy Research Institute, Daejeon, Korea. p.46-56. 미소장
26 2008. Examples of radiation wastewater treatment implemented in various countries. Twelfth International Water Technology Conference,IWTC12 2008, Alexandria, Egypt. 미소장
27 2011. Effects of ten antibiotics on seed germination and root elongation in three plant species.Arch. Environ. Con. and Tox. 60: 220-232. 미소장
28 2012. Mobility characteristics of veterinary antibiotics in soil column.A thesis for the degree of master. Chonbuk National University, Jeonju,Korea. 미소장
29 Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review 네이버 미소장
30 Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process 네이버 미소장
31 Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria 네이버 미소장
32 2011. ChapterⅠIntroduction: 1. Status of radiation technology in Korea. In:Yoo, B. D. (editor). Radiation technology and its applications. Korea Atomic Energy Research Institute, Daejeon, Korea. p.18-22. 미소장
33 2011. Advanced oxidation processes for treatment of textile and dye wastewater: a review. 2011 2nd International Conference on Environmental Science and Development,Singapore. 4: 271-275. 미소장
34 1939. Studies on the hydroponic cultures. J. Sci. Soil manure. 13: 669-822. (in Japanese) 미소장
35 Veterinary antibiotics in the aquatic and terrestrial environment 네이버 미소장
36 2010. Monitoring of veterinary drug residues in foods produced in Korea.Korean J. Food Sci. Technol. 42: 653-663. 미소장
37 Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms 네이버 미소장
38 Prioritizing veterinary pharmaceuticals for aquatic environment in Korea 네이버 미소장
39 2001. Treatment of dyeing wastewater using electron beam and biological treatment processes. A thesis for the degree of doctor of philosophy. Korea Advanced Institute of Science and Technology, Daejeon,Korea. 미소장
40 Uptake of oxytetracycline and its phytotoxicity to alfalfa ( Medicago sativa L.) 네이버 미소장
41 Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry 네이버 미소장
42 Radiolytic reactions of nitro blue tetrazolium under oxidative and reductive conditions: a pulse radiolysis study 네이버 미소장
43 Degradation of catechol by ionizing radiation, ozone and the combined process ozone-electron-beam 네이버 미소장
44 Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment 네이버 미소장
45 Significance of antibiotics in the environment 네이버 미소장
46 Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test 네이버 미소장
47 Practical use of chemical probes for reactive oxygen species produced in biological systems by γ-irradiation 네이버 미소장
48 Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products 네이버 미소장
49 2001. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere. 44:1193-1200. 미소장
50 2007. Action of fentrazamide on protein metabolism and cell division in plants. J. Pest. Sci. 32: 249-254. 미소장
51 2010. Chapter 9: Radiolysis of supercritical water. In: Wishart, J. F. and Rao, B. S. M.(editor). Recent trends in radiation chemistry. World Scientific Publishing Co. Pte. Ltd., Singapore. p. 255-278. 미소장
52 Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth 네이버 미소장
53 Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities 네이버 미소장
54 Application of accelerated electron beam and microwave irradiation to biological waste treatment 네이버 미소장
55 Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. 네이버 미소장
56 2002. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture. 212: 31-47. 미소장
57 Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry 네이버 미소장
58 An Overview of the Integration of Advanced Oxidation Technologies And Other Processes For Water And Wastewater Treatment 네이버 미소장
59 National Academy of Agricultural Sciences (NAAS). 2010. Antibiotics in manure and soil - A grave threat to human and animal health. National Academy of Agricultural Sciences, New Delhi, India. Policy Paper 43: 1-20. 미소장
60 Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation 네이버 미소장
61 2009. Management of veterinary drug residues in food. Korean J. Environ. Agri. 28: 310-325. 미소장
62 1970. Effect of calcium supply and plant age on the distribution of calcium salts in rice. Japanese J. Soil Sci. Plant Nutr. 41: 19-26 (in Japanese). 미소장
63 Visible-light-Mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. 네이버 미소장
64 Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG) 네이버 미소장
65 2007. Coupled photochemical-biological system to treat biorecalcitrant wastewaters. A thesis for the degree of doctor of philosophy. University of Barcelona, Barcelona, Spain. 미소장
66 Photocatalytic degradation of oxytetracycline using TiO 2 under natural and simulated solar radiation 네이버 미소장
67 Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process 네이버 미소장
68 2000a. Current status of the application of ionizing radiation to environmental protection: Ⅰ. Ionizing radiation sources, natural and drinking water purification (a review). High Energ. Chem. 34: 1-12. 미소장
69 2000b. Current status of the application of ionizing radiation to environmental protection: Ⅱ. Wastewater and other liquid wastes (a review). High Energ. Chem. 34: 55-73. 미소장
70 Biotechnology Journal 2012 Cover Gallery 네이버 미소장
71 Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples 네이버 미소장
72 Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation 네이버 미소장
73 2009. The photocatalytic degradation of priority pollutants. A thesis for the degree of master. Thapar university, Patiala, India. 미소장
74 Toxicity of fluoroquinolone antibiotics to aquatic organisms. 네이버 미소장
75 2006. A global perspective on the use, sale, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65: 725-759. 미소장
76 Free radicals generated by radiolysis of aqueous solutions 네이버 미소장
77 Log-Logistic Analysis of Herbicide Dose-Response Relationships 네이버 미소장
78 Chemical and immunological properties of gamma-irradiated ovalbumin as a vaccine candidate for prevention of ovalbumin-induced allergy 네이버 미소장
79 Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment 소장
80 Impact of hydrogen peroxide on nitrite formation during UV disinfection 네이버 미소장
81 Chromatography in Turkey 네이버 미소장
82 2003. Application of electron beam irradiation for effective wastewater sludge treatment. A thesis for the degree of doctor of philosophy. Chungnam National University, Daejeon, Korea. 미소장
83 2004. Analysis of veterinary antibiotics and their degradation products in ground water using liquid chromatography tandem mass spectrometry (LC/MS/MS).Proceedings of the 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, October 13-15, 2004,Minneapolis, MN (p. 118-130), National Ground Water Association,Westerville, OH. 미소장
84 2010. Removal of chloramphenicol, salicylic acid and ketoprofen using various oxidation processes: oxidation kinetic evaluation. Korean Soc.Environ. Eng. 32: 219-226. 미소장
85 2002.Escherichia coli isolated from seafood: toxicity and plasmid profiles. Int. Microbiol. 5: 11-14. 미소장
86 2003. Pharmaceutical antibiotic compounds in soils-a review. J. Plant Nutr. Soil Sci. 166: 145-167. 미소장
87 2002. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbial. 4: 779-781. 미소장
88 Sorption of veterinary pharmaceuticals in soils: a review. 네이버 미소장
89 Degradation of organolead species in aqueous solutions by electron beam irradiation 네이버 미소장
90 A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatography coupled to electrospray ionization tandem mass spectrometry 네이버 미소장
91 Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite 네이버 미소장
92 Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation 네이버 미소장
93 Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling 네이버 미소장
94 Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China 네이버 미소장
95 Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium – A white rot fungus 네이버 미소장
96 MATEO: A software package for the molecular design of energetic materials 네이버 미소장
97 2011. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 18: 566-575. 미소장
98 Interaction of Ozone with Formic Acid: A System which Supresses the Scavenging Effect of HCO~3^-/CO~3^2^- 네이버 미소장
99 Bead-based mesofluidic system for residue analysis of chloramphenicol. 네이버 미소장
100 2010. Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology. J. Environ. Sci. 22: 1281-1289. 미소장