권호기사보기
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
|---|---|---|---|---|---|---|---|---|---|
| 연구/단체명을 입력해주세요. | |||||||||
|
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Contents
Chapter 1. General introduction 13
1.1. Rhizosphere 13
1.2. Plant growth-promoting rhizobacteria (PGPR) 15
1.2.1. Direct plant growth promotion 17
1.2.2. Indirect plant growth promotion 21
1.3. Quorum sensing (QS) 24
1.4. The genus Serratia 28
1.5. Quorum sensing (QS) in Serratia spp. 28
1.6. Objectives of the study 30
Chapter 2. Quorum sensing activity of plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere 32
2.1. Introduction 32
2.2. Materials and Methods 35
2.2.1. Isolation and identification of phytohormone-producing bacteria 35
2.2.2. ACC deaminase activity, biofilm formation, and morphological and biochemical characterization 36
2.2.3. IAA analysis by gas chromatography-mass spectrometry (GC-MS) 37
2.2.4. Detection of N-acyl homoserine lactones (AHLs) 38
2.2.5. AHL identification by liquid chromatography-mass spectrometry (LC-MS/MS) 39
2.2.6. In vivo pot trial 40
2.2.7. Statistical analysis 40
2.3. Results 41
2.3.1. Isolation and identification of phytohormone-producing bacteria 41
2.3.2. ACC deaminase activity, biofilm formation, and morphological and biochemical characterization 44
2.3.3. IAA quantification by GC-MS analysis 48
2.3.4. Detection and identification of AHLs 50
2.3.5. In vivo pot trial 52
2.4. Discussion 55
Chapter 3. Complete genome sequence of Serratia glossinae strain GS2, an N-acyl homoserine lactone-producing and plant growth-promoting rhizobacterium 58
3.1. Introduction 58
3.2. Materials and Methods 59
3.2.1. Genomic DNA extraction and bacterial culture conditions 59
3.2.2. Genome sequencing, assembly, and annotation 60
3.2.3. Identification of putative luxI/R-type quorum-sensing (QS) genes 61
3.3. Results 62
3.3.1. Whole genome sequencing and sequence-based gene identification 62
3.3.2. Identification of putative luxI/R-type quorum-sensing (QS) genes 67
3.3.3. Plant growth-promoting related genes 70
3.4. Discussion 73
Chapter 4. Quorum-sensing effects in the plant growth-promoting rhizobacterium Serratia glossinae strain GS2 75
4.1. Introduction 75
4.2. Materials and Methods 77
4.2.1. Mutagenesis of quorum-sensing related genes in Serratia glossinae strain GS2 77
4.2.2. Quorum-sensing regulated phenotypes in Serratia glossinae strain GS2 83
4.2.3. Proteome 90
4.2.4. Transcriptome 93
4.3. Results 95
4.3.1. Mutagenesis of quorum-sensing related genes in Serratia glossinae strain GS2 95
4.3.2. Quorum-sensing regulated phenotypes in Serratia glossinae strain GS2 97
4.3.3. Proteome analysis 116
4.3.4. Transcriptome 119
4.4. Discussion 133
Chapter 5. Bidirectional communication of quorum-sensing signal molecules between rhizobacteria and plants evaluated by root-microbiome and meta-transcriptome analysis 135
5.1. Introduction 135
5.2. Materials and Methods 137
5.2.1. Soil collection and plant growth experiment 137
5.2.2. Root-microbiome analysis 139
5.2.3. Soil meta-transcriptome analysis 141
5.2.4. Statistical analysis 142
5.3. Results 143
5.3.1. Plant growth promotion experiment 143
5.3.2. Root-microbiome analysis 149
5.3.3. Soil meta-transcriptome analysis 160
5.4. Discussion 169
References 171
Abstract 184
초록 186
Fig. 1.1. Schematic representation of rhizosphere and rhizoplane. 13
Fig. 1.2. Plant root exudates mediate a multitude of rhizospheric interactions... 15
Fig. 1.3. Tryptophan-dependent auxin biosynthetic pathways in PGPR. 18
Fig. 1.4. Proposed model for the regulation of ethylene in the plant by a PGPR that... 20
Fig. 2.1. Phylogenetic tree showing the phylogenetic position of strain GS2 in... 43
Fig. 2.2. Scanning electron micrograph showing the morphological structure and... 47
Fig. 2.3. Gas chromatography (GC)/mass spectrometry analysis of indole-3-acetic... 49
Fig. 2.4. Thin layer chromatography bioassay (A) and LC-MS/MS analysis (B) of... 51
Fig. 2.5. Effect of Serratia glossinae strain GS2 on the growth attributes of rice... 54
Fig. 3.1. Circular map of the chromosome and the two plasmids of Serratia... 64
Fig. 3.2. Circular representation of Serratia glossinae strain GS2. The figure was... 65
Fig. 3.3. Gene map showing organization of gloR (luxR homolog) and gloI (luxI... 68
Fig. 3.4. Phylogenetic tree of GloI. Neighbor-Joining method was used in MEGA6... 69
Fig. 3.5. Phylogenetic tree of GloR. Neighbor-Joining method was used in MEGA6... 69
Fig. 3.6. Metabolic pathways involved in indole-3-acetic acid present in Serratia... 71
Fig. 3.7. Metabolic pathway to acetoin and 2,3-butanediol in Serratia glossinae... 72
Fig. 4.1. Verification of markerless deletion mutants with agarose gel... 96
Fig. 4.2. Plant growth-promoting related phenotype analysis. Growth curves (A)... 100
Fig. 4.3. Gas chromatography (GC)/mass spectrometry analysis of indole-3-acetic... 101
Fig. 4.4. Voges-Proskauer (A) and methyl red (B) reaction of Serratia glossinae... 102
Fig. 4.5. Swimming motility of Serratia glossinae GS2 wild-type, △gloI and △gloR... 103
Fig. 4.6. Effect of Serratia glossinae GS2 wild-type and mutant strains on the growth of rice plants (Waito-c) after 3 weeks... 106
Fig. 4.7. The effect of the volatile compounds of Serratia glossinae strain GS2 wild-... 108
Fig. 4.8. The plant growth modulating effects of volatile compounds from Serratia... 109
Fig. 4.9. Serratia glossinae strain GS2 wild-type and mutants were subjected to... 113
Fig. 4.10. The cluster heatmap showing the average area values of Serratia... 115
Fig. 4.11. Comparative 2-DE of intracellular proteins in Serratia glossinae GS2 wild-type (A), △gloI (8), and △gioR (C)... 117
Fig. 4.12. Agarose gel electrophoresis of RNA extracted from Serratia glossinae... 120
Fig. 4.13. Agarose gel electrophoresis of 16S rRNA gene PCR products using RNA... 121
Fig. 4.14. Agarose gel electrophoresis of double-strand cDNA synthesized by... 122
Fig. 4.15. Volcano plot distribution of the transcriptome data. A, volcano plot... 125
Fig. 4.16. Cluster analysis heat map. The heat map shown in graphical form the... 131
Fig. 4.17. Annotation of the Serratia glossinae GS2 wild-type and mutant strains transcriptome by KEGG classification.... 132
Fig. 5.1. Experimental design of multi-generation plant growth. Sterilized sand was... 138
Fig. 5.2. Effect of N-acyl homoserine lactones on the growth of rice plants. A, 1st... 144
Fig. 5.3. Effect of N-acyl homoserine lactones on plant growth attributes and chlorophyll content. A, shoot length; B, root... 145
Fig. 5.4. Rarefaction curves from the 16S rRNA libraries constructed at each time... 150
Fig. 5.5. Relative abundances of the most abundant phyla in the rice rhizospheric... 155
Fig. 5.6. Relative abundances of the most abundant class in the rice rhizospheric... 156
Fig. 5.7. Cluster analysis heat map drawn by classified predominant genus. The... 157
Fig. 5.8. Number of observed taxonomic units in the 1st, 2nd, and 3rd generation... 158
Fig. 5.9. Principal-coordinate analysis (PCoA) plot of rhizobacterial community... 159
Fig. 5.10. Agarose gel electrophoresis of soil RNA extracted from rhizospheric soil... 161
Fig. 5.11. Agarose gel electrophoresis of double-strand cDNA synthesized by soil... 161
Fig. 5.12. Annotation of the meta-transcriptome by KEGG classification. Total transcript were subjected to KEGG... 164
*표시는 필수 입력사항입니다.
| 전화번호 |
|---|
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
|---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.