권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
목차
1. 서론 9
1.1. 연구 배경 및 목적 9
1.2. 연구 동향 11
1.3. 연구내용 및 개요 12
2. 이론적 배경 15
2.1. 타이어 유니포미티 15
2.1.1. 강성 편차 16
2.1.2. 치수 편차 18
2.1.3. 중량 편차 19
2.2. 푸리에 변환 21
2.3. 벡터 연산 22
3. 시험조건 및 시험방법 23
3.1. 시험규격 및 조건설정 23
3.2. 요소분할 시험 25
3.3. 매치 마운팅 시뮬레이션 26
4. 결과 및 고찰 35
4.1. 알로이 휠 + 17인치 타이어 36
4.2. 스틸 휠 + 15인치 타이어 41
5. 결론 46
참고 문헌 47
ABSTRACT 48
Fig. 1.1. KV Correlation According to O.D 14
Fig. 2.1. Force Variation 16
Fig. 2.2. Static and Dynamic Imbalance 19
Fig. 2.3. Vector Operation 22
Fig. 3.1. Wheel Runout Machine 24
Fig. 3.2. Element Partitioning Test Method 25
Fig. 3.3. Force Variation vs. Runout of Alloy Wheel 27
Fig. 3.4. RFV vs. RRO+LRO of Alloy Wheel_#1 29
Fig. 3.5. RFV vs. RRO+LRO of Alloy Wheel_#2 29
Fig. 3.6. RFV vs. RRO+LRO of Alloy Wheel_#3 30
Fig. 3.7. RFV vs. RRO+LRO of Alloy Wheel_#4 30
Fig. 3.8. RFV vs. RRO+LRO of Steel Wheel 31
Fig. 3.9. RFV vs. RRO+LRO of Steel Wheel_#1 33
Fig. 3.10. RFV vs. RRO+LRO of Steel Wheel_#2 33
Fig. 3.11. RFV vs. RRO+LRO of Steel Wheel_#3 34
Fig. 3.12. RFV vs. RRO+LRO of Steel Wheel_#4 34
Fig. 4.1. RFV Waveform Compare_Alloy Wheel+17inch Tire_#1 37
Fig. 4.2. RFV Waveform Compare_Alloy Wheel+17inch_#2 38
Fig. 4.3. RFV Waveform Compare_Alloy Wheel+17inch_#3 39
Fig. 4.4. RFV Waveform Compare_Alloy Wheel+17inch_#4 40
Fig. 4.5. RFV Waveform Compare_Steel Wheel+15inch_#1 42
Fig. 4.6. RFV Waveform Compare_Steel Wheel+15inch_#2 43
Fig. 4.7. RFV Waveform Compare_Steel Wheel+15inch_#3 44
Fig. 4.8. RFV Waveform Compare_Steel Wheel+15inch_#4 45
When it comes to match mounting a tire to a wheel, align the tire's high point on the radial force first harmonic to the wheel's low point on the radial runout first harmonic.
However, as there are still reject cases, I tried to reduce these cases using lateral runout data while match mounting to improve an assembled wheel's uniformity.
The reason why I brought LRO to my study is that, I expected the lateral force is somewhat related to the radial force. So, I have experimented and found out that the rim width, which is related to the lateral force, effects radial diameter. To create a equation between RRO and LRO, I performed a regression analysis to deduct a correlation coefficient. I used two different methods to confirm the simulated data and actual data. The first method is to match combining RRO with LRO, pointing out one of the lower points. The second one is to match adjusting a wheel five degrees at a time throughout the circumferential direction. I found out the two methods generally show better results than existing ones. The first method is a little better or similar to the existing methods, whereas the second one creates concrete improvement throughout all eight test groups.
The reason for the specific 'risen case' while the first method was being implemented was that the wheel and tire's wave energy was added from other points during the matching process between the high and low points. This could happen when the second harmonic is on a larger scale. Hence, to get the consistently better results, the circumferential direction should be factored in while match mounting process. However, as it is impossible to secure a tire and a wheel's wave forms and match, I suggest the first method with a little bit of a modification : matching a wheel's low point on the radial runout first harmonic with LRO taken into account.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.