권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Abstract
Contents
Chapter I. Introduction 19
Chapter II. Literature Survey 23
2.1. Titanium and titanium alloys 23
2.1.1. The properties of Titanium 23
2.1.2. Application of titanium metal and its alloys 29
2.2. Industrial production routes of titanium 36
2.2.1. Precursors and reducing agents for titanium production 36
2.2.2. Hunter process 53
2.2.3. Kroll process 55
2.3. Production process of titanium ingot 60
2.3.1. Vacuum arc remelting process 60
2.3.2. Cold hearth melting process 62
2.3.3. Induction skull melting 64
2.4. Alternatives to the industrial process 65
2.4.1. Electrolytic Method 65
2.4.2. FFC Process 68
2.4.3. Armstrong Process 72
2.4.4. Idaho titanium technologies 75
2.4.5. MER process 78
2.4.6. OS process 82
2.4.7. SRI international 86
2.4.8. HAMR process 89
2.5. Production processes of titanium powder 91
2.5.1. The Hydride-Dehydride Process 91
2.5.2. Plasma rotating electrode process (PREP) 94
2.5.3. Gas atomization 96
2.5.4. Electrode induction melting-gas atomization (EIGA) 100
2.5.5. Plasma atomization (PA) 103
2.5.6. Induction plasma spheroidization 105
Chapter III. Theoretical background 107
3.1. Combustion Synthesis 107
3.1.1. Advantages of combustion synthesis 110
3.1.2. Types of reaction 111
3.1.3. Combustion products 113
3.1.4. Thermodynamics of combustion synthesis 115
3.2. Molten Salt Electrochemistry 120
3.2.1. Faraday's laws of electrolysis 124
3.2.2. Mass transport and limiting current 127
Chapter IV. Fabrication of a Spherical Titanium Powder by Combined Combustion Synthesis and DC Plasma 130
4.1. Experimental 130
4.1.1. Preparations of Combustion synthesis and spheroidization 130
4.1.2. Analysis of combustion products 133
4.2. Results and discussion 135
4.2.1. Thermodynamic analysis 135
4.2.2. Characteristics of combustion products 137
4.2.3. Combustion parameters 144
4.2.4. DC Plasma Treatment 150
Chapter V. Removal of Mg and MgO by-products through magnesiothermic reduction of Ti powder in self-propagating high-temperature synthesis 152
5.1. Materials and Methods 152
5.2. Results and Discussion 156
Chapter VI. Purification of Titanium from Ti-Cu alloy by Molten Salts Electro-refining 173
6.1. Experiments 173
6.1.1. Apparatus 173
6.1.2. Cyclic voltammetry 174
6.1.3. Chronopotentiometry 175
6.2. Results and Discussion 177
6.2.1. Thermodynamic analysis 177
6.2.2. Electrochemical studies in molten fluoride electrolytes 198
Chapter VII. Conclusion 213
Reference 216
Fig. 1. Flow charts of conventional manufacturing process of Ti powder 22
Fig. 2. Crystalline state of titanium: (a) body centered cubic... 25
Fig. 3. A schematic diagram of the Kroll Process 57
Fig. 4. An illustration of a large pilot demonstration cell to produce titanium powder 67
Fig. 5. An illustration of the FFC-Cambridge process for the electrochemical... 71
Fig. 6. Flow chart of Armstrong process 73
Fig. 7. The scanning electron microscope images of the titanium powders of the... 74
Fig. 8. Basic process flow diagram of the plasma quench reactor system 76
Fig. 9. Schematic diagram showing the electrochemical cell of the MER process 80
Fig. 10. A schematic of Electrolysis in CaCl₂ (OS Process) 85
Fig. 11. schematic diagram and basic layout of the fluidized bed reactor 88
Fig. 12. The hydride-dehydride (HDH) process 93
Fig. 13. schematic diagram of Plasma rotating electrode process (PREP) 95
Fig. 14. ATI Powder 45 kg titanium gas atomizer 98
Fig. 15. Typical size distributions of gas atomized titanium and gamma titanium... 99
Fig. 16. Schematic of the Electrode induction melting-gas atomization (EIGA) process 101
Fig. 17. Size distribution of EIGA titanium alloy powder compared with stainless... 102
Fig. 18. Schematic of the plasma atomization process and photograph of atomization... 104
Fig. 19. Schematic of the Induction plasma spheroidization process 106
Fig. 20. A schematic of a SHS reaction 109
Fig. 21. Schematic representation of the adiabatic temperature calculation 116
Fig. 22. A plot of the concentration gradient versus distance... 128
Fig. 23. Experimental process flow diagram 134
Fig. 24. Thermodynamic calculations for adiabatic combustion temperature (Tad) and... 136
Fig. 25. XRD results of titanium powder: (a) α=2, (b) α=3, (c) α=4, before leaching 139
Fig. 26. XRD results of combustion products: (a) α=2, (b) α=3, (c) α=4, after leaching 140
Fig. 27. FE-SEM morphology of the Ti powders: (a)-(c) before leaching, (d)-(f) after leaching. 142
Fig. 28. Oxygen concentration of Ti powder in TiO₂+α Mg system 143
Fig. 29. Combustion parameters of TiO₂+α Mg system. 145
Fig. 30. Temperature-time profile recorded in the combustion of TiO₂+α Mg system 147
Fig. 31. Arrhenius plot [lnUc vs 1/Tc] for the combustion process in TiO₂ + α Mg system 148
Fig. 32. FE-SEM morphology and size distribution of the Ti powders: (a), (c) before... 151
Fig. 33. Leaching and filtration system for the removal of reaction by-products. 153
Fig. 34. XRD profiles of samples obtained after leaching: (a) experiment 1-1 (5 M... 157
Fig. 35. Pourbaix diagrams for Mg-H₂O system over a pH range of 0-14 and an... 158
Fig. 36. XRD profiles of reaction products: (a) experiment 2-1. (8.5. M CH3COOH, 6.5... 165
Fig. 37. Temperature of leaching solution during two-step acid leaching process: (a)... 166
Fig. 38. Ti oxide formation during leaching in experiments 2-1 to 2-3 167
Fig. 39. Morphology and purity of reaction product of experiment 2-4. (0.4. M HCl,... 169
Fig. 40. Oxygen contents of Ti powders produced under experimental conditions of... 172
Fig. 41. Schematic illustration of electrolytic cell for cyclic voltammetric (CV) and... 176
Fig. 42. - equilibrium calculation condition within a temperature range of 0℃ to... 179
Fig. 43. Calculated thermodynamic equilibrium - equilibrium calculation condition... 182
Fig. 44. Calculated thermodynamic equilibrium - equilibrium calculation condition... 185
Fig. 45. Calculated thermodynamic equilibrium - equilibrium calculation condition... 188
Fig. 46. Calculated thermodynamic equilibrium - equilibrium calculation condition... 191
Fig. 47. Calculated thermodynamic equilibrium - equilibrium calculation condition... 194
Fig. 48. Cyclic voltammograms obtained using LiF-NaF (61:39 mol %) eutectic salt... 199
Fig. 49. TG-DTA thermogram of eutectic electrolyte (LiF-NaF) and BaTiF6 initiator[이미지참조] 201
Fig. 50. Graphs showing polarization behavior and time-dependent voltage behavior... 205
Fig. 51. Graphs showing polarization behavior and time-dependent voltage behavior... 207
Fig. 52. SEM EDS analysis results after 18 wt% Ti electrorefining:... 209
Fig. 53. SEM EDS analysis results after 20 wt% Ti electrorefining:... 210
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.