본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Abstract

Contents

Chapter I. Introduction 19

Chapter II. Literature Survey 23

2.1. Titanium and titanium alloys 23

2.1.1. The properties of Titanium 23

2.1.2. Application of titanium metal and its alloys 29

2.2. Industrial production routes of titanium 36

2.2.1. Precursors and reducing agents for titanium production 36

2.2.2. Hunter process 53

2.2.3. Kroll process 55

2.3. Production process of titanium ingot 60

2.3.1. Vacuum arc remelting process 60

2.3.2. Cold hearth melting process 62

2.3.3. Induction skull melting 64

2.4. Alternatives to the industrial process 65

2.4.1. Electrolytic Method 65

2.4.2. FFC Process 68

2.4.3. Armstrong Process 72

2.4.4. Idaho titanium technologies 75

2.4.5. MER process 78

2.4.6. OS process 82

2.4.7. SRI international 86

2.4.8. HAMR process 89

2.5. Production processes of titanium powder 91

2.5.1. The Hydride-Dehydride Process 91

2.5.2. Plasma rotating electrode process (PREP) 94

2.5.3. Gas atomization 96

2.5.4. Electrode induction melting-gas atomization (EIGA) 100

2.5.5. Plasma atomization (PA) 103

2.5.6. Induction plasma spheroidization 105

Chapter III. Theoretical background 107

3.1. Combustion Synthesis 107

3.1.1. Advantages of combustion synthesis 110

3.1.2. Types of reaction 111

3.1.3. Combustion products 113

3.1.4. Thermodynamics of combustion synthesis 115

3.2. Molten Salt Electrochemistry 120

3.2.1. Faraday's laws of electrolysis 124

3.2.2. Mass transport and limiting current 127

Chapter IV. Fabrication of a Spherical Titanium Powder by Combined Combustion Synthesis and DC Plasma 130

4.1. Experimental 130

4.1.1. Preparations of Combustion synthesis and spheroidization 130

4.1.2. Analysis of combustion products 133

4.2. Results and discussion 135

4.2.1. Thermodynamic analysis 135

4.2.2. Characteristics of combustion products 137

4.2.3. Combustion parameters 144

4.2.4. DC Plasma Treatment 150

Chapter V. Removal of Mg and MgO by-products through magnesiothermic reduction of Ti powder in self-propagating high-temperature synthesis 152

5.1. Materials and Methods 152

5.2. Results and Discussion 156

Chapter VI. Purification of Titanium from Ti-Cu alloy by Molten Salts Electro-refining 173

6.1. Experiments 173

6.1.1. Apparatus 173

6.1.2. Cyclic voltammetry 174

6.1.3. Chronopotentiometry 175

6.2. Results and Discussion 177

6.2.1. Thermodynamic analysis 177

6.2.2. Electrochemical studies in molten fluoride electrolytes 198

Chapter VII. Conclusion 213

Reference 216

List of Tables

Table 1. Physical properties of titanium, compared to some competitor metals 26

Table 2. Components of commercially pure titanium (cp-Ti) and Ti alloys grades 1-5 27

Table 3. Mechanical properties of Ti and Ti alloys 28

Table 4. Application of titanium and its alloy materials in aerospace filed 31

Table 5. Some applications of titanium and its alloys in medical parts 34

Table 6. Approximate prices of reducing agents 45

Table 7. The differences between the Kroll and Hunter process 59

Table 8. Experimental conditions of DC plasma treatment 132

Table 9. Combustion parameters of the TiO₂+α Mg system 149

Table 10. Experimental acid leaching conditions for the removal of reaction... 154

Table 11. Calculated reaction enthalpy and Gibbs free energy with (a) hydrochloric... 162

Table 12. Thermodynamic stability calculation for the fluoride based material... 178

Table 13. Thermodynamic stability calculation for the chloride based material... 181

Table 14. Thermodynamic stability calculation for the fluoride based materials,... 184

Table 15. Thermodynamic stability calculation for the chloride based materials,... 187

Table 16. Thermodynamic stability calculation for the chloride source materials,... 190

Table 17. Thermodynamic stability calculation for the fluoride source material,... 193

Table 18. HSC Chemistry results for testing the disproportionation of Ti and its ions 195

Table 19. Experiment conditions of Ti electrorefining 203

Table 20. Results of metal ICP analysis on the electrolyte and Ti deposit... 212

List of Figures

Fig. 1. Flow charts of conventional manufacturing process of Ti powder 22

Fig. 2. Crystalline state of titanium: (a) body centered cubic... 25

Fig. 3. A schematic diagram of the Kroll Process 57

Fig. 4. An illustration of a large pilot demonstration cell to produce titanium powder 67

Fig. 5. An illustration of the FFC-Cambridge process for the electrochemical... 71

Fig. 6. Flow chart of Armstrong process 73

Fig. 7. The scanning electron microscope images of the titanium powders of the... 74

Fig. 8. Basic process flow diagram of the plasma quench reactor system 76

Fig. 9. Schematic diagram showing the electrochemical cell of the MER process 80

Fig. 10. A schematic of Electrolysis in CaCl₂ (OS Process) 85

Fig. 11. schematic diagram and basic layout of the fluidized bed reactor 88

Fig. 12. The hydride-dehydride (HDH) process 93

Fig. 13. schematic diagram of Plasma rotating electrode process (PREP) 95

Fig. 14. ATI Powder 45 kg titanium gas atomizer 98

Fig. 15. Typical size distributions of gas atomized titanium and gamma titanium... 99

Fig. 16. Schematic of the Electrode induction melting-gas atomization (EIGA) process 101

Fig. 17. Size distribution of EIGA titanium alloy powder compared with stainless... 102

Fig. 18. Schematic of the plasma atomization process and photograph of atomization... 104

Fig. 19. Schematic of the Induction plasma spheroidization process 106

Fig. 20. A schematic of a SHS reaction 109

Fig. 21. Schematic representation of the adiabatic temperature calculation 116

Fig. 22. A plot of the concentration gradient versus distance... 128

Fig. 23. Experimental process flow diagram 134

Fig. 24. Thermodynamic calculations for adiabatic combustion temperature (Tad) and... 136

Fig. 25. XRD results of titanium powder: (a) α=2, (b) α=3, (c) α=4, before leaching 139

Fig. 26. XRD results of combustion products: (a) α=2, (b) α=3, (c) α=4, after leaching 140

Fig. 27. FE-SEM morphology of the Ti powders: (a)-(c) before leaching, (d)-(f) after leaching. 142

Fig. 28. Oxygen concentration of Ti powder in TiO₂+α Mg system 143

Fig. 29. Combustion parameters of TiO₂+α Mg system. 145

Fig. 30. Temperature-time profile recorded in the combustion of TiO₂+α Mg system 147

Fig. 31. Arrhenius plot [lnUc vs 1/Tc] for the combustion process in TiO₂ + α Mg system 148

Fig. 32. FE-SEM morphology and size distribution of the Ti powders: (a), (c) before... 151

Fig. 33. Leaching and filtration system for the removal of reaction by-products. 153

Fig. 34. XRD profiles of samples obtained after leaching: (a) experiment 1-1 (5 M... 157

Fig. 35. Pourbaix diagrams for Mg-H₂O system over a pH range of 0-14 and an... 158

Fig. 36. XRD profiles of reaction products: (a) experiment 2-1. (8.5. M CH3COOH, 6.5... 165

Fig. 37. Temperature of leaching solution during two-step acid leaching process: (a)... 166

Fig. 38. Ti oxide formation during leaching in experiments 2-1 to 2-3 167

Fig. 39. Morphology and purity of reaction product of experiment 2-4. (0.4. M HCl,... 169

Fig. 40. Oxygen contents of Ti powders produced under experimental conditions of... 172

Fig. 41. Schematic illustration of electrolytic cell for cyclic voltammetric (CV) and... 176

Fig. 42. - equilibrium calculation condition within a temperature range of 0℃ to... 179

Fig. 43. Calculated thermodynamic equilibrium - equilibrium calculation condition... 182

Fig. 44. Calculated thermodynamic equilibrium - equilibrium calculation condition... 185

Fig. 45. Calculated thermodynamic equilibrium - equilibrium calculation condition... 188

Fig. 46. Calculated thermodynamic equilibrium - equilibrium calculation condition... 191

Fig. 47. Calculated thermodynamic equilibrium - equilibrium calculation condition... 194

Fig. 48. Cyclic voltammograms obtained using LiF-NaF (61:39 mol %) eutectic salt... 199

Fig. 49. TG-DTA thermogram of eutectic electrolyte (LiF-NaF) and BaTiF6 initiator[이미지참조] 201

Fig. 50. Graphs showing polarization behavior and time-dependent voltage behavior... 205

Fig. 51. Graphs showing polarization behavior and time-dependent voltage behavior... 207

Fig. 52. SEM EDS analysis results after 18 wt% Ti electrorefining:... 209

Fig. 53. SEM EDS analysis results after 20 wt% Ti electrorefining:... 210