본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지 1

목차 4

Abstract 9

Ⅰ. 서론 11

Ⅱ. 이론적 배경 15

1. 페로브스카이트 태양전지 (Perovskite solar cell) 15

1.1. 페로브스카이트 태양전지의 구조 15

1.2. 페로브스카이트 태양전지의 구동 원리 17

1.3. 페로브스카이트 태양전지의 구성 18

1.4. 페로브스카이트 태양전지 동작 및 출력 특성 23

2. 금속산화물 27

2.1. 주석산화물 27

2.2. 화학용액증착법 (Chemical bath deposition; CBD) 29

Ⅲ. 실험 30

1. 실험방법 30

1.1. 화학용액증착법을 이용한 전자수송층 제작 30

1.2. 페로브스카이트 광흡수층 제작 31

1.3. 정공수송층 및 후면전극 제작 31

2. 특성분석 32

2.1. 전자수송층 및 광흡수층 박막 특성 32

2.2. 페로브스카이트 태양전지 소자 특성 33

Ⅳ. 결과 및 고찰 34

1. 열처리 온도 변화에 따른 전자수송층 (SnO₂) 박막 특성 분석 34

2. 전자수송층과 광흡수층 계면 특성 분석 41

3. 페로브스카이트 태양전지 소자 특성 측정 44

Ⅴ. 결론 58

참고 문헌 61

표목차 6

Table 4.1. Atomic percentages of components of SnO₂ by XPS spectroscopy 39

Table 4.2. Oxygen percentages classified by oxygen states of 150℃, 250℃,... 39

Table 4.3. Sn:O proportion chart of 150℃, 250℃, 300℃ annealed SnO₂ film 39

Table 4.4. Chart of each factors (Voc, Jsc, FF, PCE) of conditional... 46

Table 4.5. Mean and standard deviation of factors for each conditions 46

Table 4.6. Comparison of each factors (Voc, Jsc, FF, PCE) according to scan... 49

Table 4.7. Comparison of each factors (Voc, Jsc, FF, PCE) according to scan... 50

Table 4.8. Comparison of each factors (Voc, Jsc, FF, PCE) according to scan... 50

Table 4.9. Average of Voc of 200℃ annealed perovskite solar cell 56

Table 4.10. Average of factors of each annealing condition perovskite solar... 57

Table 4.11. Factors of each champion perovskite solar cells 57

그림목차 7

Fig. 1.1. Structure of perovskite 12

Fig. 2.1. Schematic structure of four typical perovskite solar cells... 16

Fig. 2.2. Operating principle of perovskite solar cell 17

Fig. 2.3. Energy diagram of metal oxides for electron transport layer 19

Fig. 2.4. Energy diagram of perovskite 20

Fig. 2.5. Antisolvent engineering procedure for preparing perovskite film 21

Fig. 2.6. SEM images of perovskite film by surface and cross section 21

Fig. 2.7. Molecular structure of Spiro-OMeTAD and other dopants 22

Fig. 2.8. J-V curve of perovskite solar cell with multiple factors 24

Fig. 2.9. Schematic diagram of fill factor 25

Fig. 2.10. Series and shunt resistance circuit diagram of a solar cell 26

Fig. 2.11. Schematic diagram of the advantages of SnO₂ 28

Fig. 2.12. Schematic diagram of Chemical bath deposition 29

Fig. 4.1. SEM images of 150℃, 250℃, 300℃ annealed SnO₂ film 34

Fig. 4.2. XRD peaks of 150℃, 250℃, 300℃ annealed SnO₂ film 35

Fig. 4.3. XPS of O 1s peak of (a)150℃, (b)250℃, (c)300℃ annealed... 38

Fig. 4.4. PL spectrum with the same perovskite on top of... 42

Fig. 4.5. TCSPC with the same perovskite on top of... 43

Fig. 4.6. J-V curves of perovskite solar cells based on... 45

Fig. 4.7. Schematic graph of common hysteresis of perovskite solar cell 47

Fig. 4.8. J-V curves that show hysteresis of perovskite solar cell based on... 49

Fig. 4.9. Types of resistance in perovskite solar cell devices 51

Fig. 4.10. Dark J-V curves of perovskite solar cell based on each condition... 52

Fig. 4.11. (a) EQE, (b) IQE analysis of perovskite solar cell based on each... 54

Fig. 4.12. UV absorption of 150℃, 250℃, 300℃ annealed SnO₂ film 55

초록보기

 Perovskite solar cells (PSCs) have achieved a high efficiency of more than 25.7% by using chemical bath deposition (CBD) method for uniform and fine SnO₂ thin films used as electron transport layer (ETL) and controlling interfaces through surface treatment between the perovskite layer and hole transport layer (HTL). However, at the ETL and perovskite interface, a lot of recombination occurs due to the defects of ETL, which lowers the device performance. In this study, different annealing temperatures were applied to control the defect of SnO₂ to enhance the efficiency of PSCs. From various analysis results, it was confirmed that the amount of oxygen vacancy on the surface was increased as the annealing temperature raised and it promoted non-radiative recombination at the interface, thereby lower the device performance. From optimized annealing temperature that can reduce such defect, we further improved device performance up to 24. 15%. We suggest a direction in which PSCs can achieve much higher efficiency from this study.