본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Abstract

Contents

Abbreviations 15

CHAPTER Ⅰ. INTRODUCTION 16

1.1. Background 16

1.2. Statement Of The Problem. 19

1.3. Main Objective 20

1.4. Research Objectives 21

1.5. Research Questions 21

1.6. Significance of the Study 21

1.7. Scope Of The Study 24

CHAPTER Ⅱ. LITERARURE REVIEW 25

2.1. Definition of terms 25

2.2. Aquifer Characteristics 34

2.2.1. Aquifer types & Classification 34

2.2.2. Aquifer Characteristics 35

2.2.3. Confined Aquifer (Artesian Aquifer) 35

2.2.4. Confined Aquifer (Artesian Aquifer) Characteristics 35

2.2.5. Semi-confined Aquifer (Leaky Confined Aquifer) 36

2.2.6. Semi-confined Aquifer (Leaky Confined Aquifer) Characteristics 36

2.2.7. Geological Classification 37

2.2.8. Aquifer Material 37

2.2.9. Geological Classification Types 38

2.2.10. Hydraulic Classification 38

2.2.11. Hydraulic Classification Types 39

2.2.12. Hydrogeological Processes 40

2.2.13. Recharge 40

2.2.14. Discharge 41

2.2.15. Natural Discharge 41

2.2.16. Human-Induced Discharge 41

2.2.17. Flow Patterns 42

2.2.18. Factors that influence hydraulic conductivity and transmissivity 43

2.2.19. Heterogeneity and Anisotropy 44

2.3. Groundwater Quality 46

2.3.1. Groundwater contaminants 46

2.3.2. Pathogens 46

2.3.3. Nutrients 46

2.3.4. Heavy Metals 47

2.3.5. Organic Pollutants 47

2.3.6. Emerging Contaminants 47

2.3.7. Groundwater monitoring and sampling 48

2.4. Regulatory framwork 48

2.5. Interactions between aquifer characteristics and groundwater quality 49

2.5.1. Transportation mechanisms 49

2.5.2. Influence on Contaminant Transport 49

2.5.3. Influence on Contaminant Transport 50

2.5.4. Heterogeneity and Anisotropy 50

2.5.5. Aquifer Depth 50

2.5.6. Hydrogeological Gradient 51

2.5.7. Groundwater, transport mechanisms 51

2.6. Gap in Knowledge 52

2.7. Future research 53

CHAPTER Ⅲ. METHODOLOGY 54

3.1. Research Design and Approach 54

3.2. Study Area and site location 54

3.2.1. Geographical background 54

3.2.2. Vegetation 55

3.2.3. Hydrography 55

3.2.4. Climate 56

3.2.5. Topography 56

3.2.6. Soil 57

3.2.7. Geological Background 57

3.3. Data Collection Methods 58

3.3.1. Subsection 1: Aquifer Characteristics 59

3.3.2. Subsection 2: Groundwater Quality 61

3.3.3. Laboratory Analysis 62

3.3.4. Data Analysis 63

3.3.5. Ethical Considerations 63

3.3.6. Data Validation & Quality Assurance 64

3.3.7. Limitations 64

CHAPTER Ⅳ. RESULTS AND DISCUSSION 66

4.1. Structure of our results and discussion 66

4.2. Aquifer Characteristics Analyses 66

4.2.1. Groundwater Availability 68

4.2.2. Aquifer Health 68

4.2.3. Water Quality 68

4.2.4. Community Water Supply 68

4.2.5. Infrastructure Stability 69

4.2.6. Transmissivity and Hydraulic Conductivity 69

4.3. Discussion 71

4.3.1. Water Quality and Human Health 78

4.3.2. Corrosion of Infrastructure 78

4.3.3. Agricultural Impacts 79

4.3.4. Aquatic Ecosystem Health 79

4.3.5. Oxidation Reduction Potential 79

4.3.6. Dissolved Oxygen 80

4.3.7. Pollutants result 81

4.3.8. Toxic parameters 82

4.3.9. Cations and Anions 83

4.3.10. Alkalinity 84

4.3.11. Proposed strategies to mitigate water quality issues 92

4.4. Comparism with prior studies 92

4.5. Limitation and uncertainties 93

CHAPTER Ⅴ. CONCLUSION AND RECOMMENDATION 94

5.1. Conclusion 94

5.2. Recommendations 95

References 97

APPENDICES 99

Appendix 1. Borehole data for Banana 99

Appendix 2. Borehole data for Barode 100

Appendix 3. Borehole Data for Boulama I 101

Appendix 4. Borehole Data for Boulama II 102

Appendix 5. Borehole Data for Dar Es Salam 103

Appendix 6. Borehole Data for Darso 104

Appendix 7. Borehole Data for Djamtari 105

Appendix 8. Borehole Data for Gadare 106

Appendix 9. Borehole Data for Kassa 107

Appendix 10. Borehole Data for Maissaba 108

Appendix 11. Borehole Data for Maka Boubala 109

Appendix 12. Borehole Data for Mafara 110

Appendix 13. Borehole Data for Massim Touradjo 111

Appendix 14. Borehole Data for Mayo Koba I 112

Appendix 15. Borehole Data for Mayo Tolere 113

Appendix 16. Borehole Data for Mbamti Katarko 114

Appendix 17. Borehole Data for Meiganga Gare 1 115

Appendix 18. Borehole Data for Mbiwairou 116

Appendix 19. Borehole Data for Samba 117

Appendix 20. Borehole Data for Wouro Mana 118

국문초록 119

List of Tables

Table 2.1. Classification of Transmissivity- magnitude 39

Table 2.2. Crystaline rocks and their Conductivity- magnitude range 40

Table 3.1. Average monthly Climate data -Djerem Department. 56

Table 4.1. Static water level 67

Table 4.2. Calculated Transmissivity (T) and Hydraulic Conductivity (k) values at various investigated points of the study area 69

Table 4.3. Correlation Statistical 70

Table 4.4. Various organoleptic parameters measured in the study area 77

Table 4.5. Pollutants and their concentrations at various locations 81

Table 4.6. Toxic elements and their concentration 82

Table 4.7. Major ions and their concentrations 83

List of Figures

Figure 1.1. Permeable and impermeable geological formation 18

Figure 1.2. The interconnectivity of groundwater and the environment (Brooks/Cole. Congage Learning) 22

Figure 1.3. Aaquifers, recharge and discharge.(Groundwater & Aquifer- Utah geological survey) 37

Figure 3.1. Research design and Approach 54

Figure 3.2. Location of Djèrem Department and borehole locations 55

Figure 3.3. Topographical map of Djerem Department. 57

Figure 3.4. Geologic map of Cameroon locating Djèrem Department 58

Figure 3.5. Illustration of data collection 58

Figure 4.1. Variation in static Water level 67

Figure 4.2. Variation of Hydralic Conductivity and Transmissivity in the stidy area 70

Figure 4.3. A model of Hydraulic conductivity and Transmissivity of the study area. 70

Figure 4.4. Regression statistics 71

Figure 4.5. pH level variation within the study area 78

Figure 4.6. Variation of Oxidation Reduction Potential in the study area 79

Figure 4.7. Percentage Oxygen dissolved in groundwqater per locality in the study area 80

Figure 4.8. Spatial distribution of the concentration of sulphate(mg/l) in the study area 85

Figure 4.9. Spatial distribution of the concentration of sulphide(mg/l) in the study 85

Figure 4.10. Spatial distribution of Silicon concentration (mg/l) in the study area 86

Figure 4.11. Spatial distribution of phosphate concentration (mg/l) in the study area 86

Figure 4.12. Spatial distribution of phosphide concentration (mg/l) in the study area 87

Figure 4.13. Spatial distribution of Boron concentration (mg/l) in the study area 87

Figure 4.14. Spatial distribution of Chloride concentration (mg/l) in the study area 88

Figure 4.15. Spatial distribution of Hardness in the study area 88

Figure 4.16. Spatial distribution of Total hardness in the study area 89

Figure 4.17. Spatial distribution of Magnessium concentration (mg/l) in the study area 89

Figure 4.18. Spatial distribution of Dissolved Oxygen (DO) in the study area 90

Figure 4.19. Spatial distribution of Nitride (mg/l) in the study area 90

Figure 4.20. Spatial distribution of Nitrates (mg/l) in the study area 91

Figure 4.21. Spatial distribution of Asenic (mg/l) in the study area 91

초록보기

 이 연구 작업은 기후 변화로 인한 수위 감소의 도래에 주민들을 위한 대체 수원 역할을 하기 위해 Djerem 부서의 대수층 특성 및 지하수 수질에 대한 광범위한 분석을 수행합니다. 주요 목표는 다음과 같습니다. 연구 지역의 대수층 특성과 지하수 수질은 어떻습니까? ,이 대수층 내에서 투과율과 수압 전도도 사이의 관계는 무엇입니까?,지하수의 가능한 정화는 무엇입니까?

펌핑 시험 방법을 사용하여 대수층의 투과율, 수압 전도도 및 저장성을 조사했습니다. Excel 소프트웨어는 회귀 분석에 사용되었으며 수압 전도도와 투과율 사이에 존재하는 관계의 표준 편차를 추가로 결정했습니다. 화학 분석은 EPA 방법을 사용하여 수행되었습니다.

결과는 연구 영역의 대수층 물리적 특성이 이방성 및 이질성 행동 패턴에 의해 영향을 받았다는 것을 보여줍니다. 대수층은 < 0.1m²/day일의 지각할 수 없는 대수층에 적용되는 투과율 값을 방출했습니다. EPA 방법을 사용한 분석에 따르면 물 함유 지층은 높은 주요 이온 농도가 없으며 오염된 지하수 구역은 인위적 공급원(60%)에 기인하는 것으로 나타났습니다. 그리고 보간된 지도에 묘사된 주로 질화물 이온 농도이었다.

결과는 이방성과 이질성이 지하수 흐름에 영향을 미친다는 것을 보여줍니다. 이를 바탕으로 제렘 부서 에서 수심 70m< 지하수 노출은 투과율 값을 0.1m²/day 고려해야 합니다. 연구 영역의 재충전 및 방전을 식별하기 위해 추가 연구가 필요합니다.