| 1 |
B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple instance learning. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2009. |
미소장 |
| 2 |
J. Kwon and K. Lee, “Visual tracking decomposition,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1269-1276, 2010. |
미소장 |
| 3 |
Junseok Kwon and Kyoung Mu Lee. Tracking by sampling trackers. Proceedings of International Conference on Computer Vision, pages 1195-1202, 2011. |
미소장 |
| 4 |
Tianzhu Zhang, Bernard Ghanem, Si Liu, Narendra Ahuja. Robust visual tracking via multi-task sparse learning. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2012 |
미소장 |
| 5 |
U.S. Army. FM 22-9 Soldier Performance In Continuous Operations. 1991 |
미소장 |
| 6 |
Defense Daily. “Vietnam Var and the advent of M16 Rifle” 2008. 9. 9. in Korean |
미소장 |
| 7 |
Incremental Learning for Robust Visual Tracking  |
미소장 |
| 8 |
Weapons data center of Defense Acquisition Program Administration. in Korean |
미소장 |
| 9 |
http://www.cs.toronto.edu/~dross/ivt/ |
미소장 |
| 10 |
http://vision.ucsd.edu/~bbabenko/data/ |
미소장 |
| 11 |
http://cv.snu.ac.kr/research/~vtd/ |
미소장 |
| 12 |
G. H. Golub and C.F. Van Loan. Matrix Computations. The Jojns Hopkins University Press, 1996. |
미소장 |
| 13 |
P. Hall, D. Marshall, and R. Martin. Incremental eigenanalysis for classification. Proceedings of British Machine Vision Conference, pages 286-295, 1998. |
미소장 |
| 14 |
Sequential Karhunen-Loeve basis extraction and its application to images  |
미소장 |
| 15 |
Incremental Singular Value Decomposition of Uncertain Data with Missing Values  |
미소장 |
| 16 |
Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition  |
미소장 |
| 17 |
J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual tracking. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, pages 793-800. MIT Press, 2005. |
미소장 |
| 18 |
R.-S. Lin, D. Ross, J. Lin, and M.-H. Yang. Adaptive discriminative generative model and its applications. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, pages 801-808. MIT Press, 2005. |
미소장 |
| 19 |
Contour tracking by stochastic propagation of conditional density  |
미소장 |
| 20 |
B. North and A. Blake. Learning dynamical models using expectation-maximization. Proceedings of IEEE International Conference on Computer Vision, pages 384-389, 1998. |
미소장 |
| 21 |
Probabilistic Principal Component Analysis  |
미소장 |
| 22 |
S. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearms, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 626-632. MIT Press, 1997. |
미소장 |
| 23 |
Eigen Tracking: robust matching and tracking of articulated objects using a view-based representation  |
미소장 |
| 24 |
P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of IEEE International Conference on Computer Vision, volume 1, pages 511-518, 2001. |
미소장 |
| 25 |
P. Dllar, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classification. Proceedings of IEEE International Conference on Computer Vision, June 2007. |
미소장 |
| 26 |
J. Wang, X. Chen, and W. Gao. Online selecting discriminative tracking features using particle filter. Proceedings of IEEE International Conference on Computer Vision, volume 2, pages 1037-1042, 2005. |
미소장 |
| 27 |
T. G. Dietterich, R. H. Lathrop, and L. T. Perez. Solving the multiple instance problem with axis parallel rectangles. Artificial Intelligence, pages 31-71, 1997. |
미소장 |
| 28 |
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. Proceedings of Annual Conference on Neural Information Processing Systems, pages 577-584, 2003. |
미소장 |
| 29 |
P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. Proceedings of Annual Conference on Neural Information Processing Systems, pages 1417-1426, 2005. |
미소장 |
| 30 |
Greedy Function Approximation: A Gradient Boosting Machine  |
미소장 |
| 31 |
N. C. Oza. Online Ensemble Learning. Ph.D. Thesis, University of California, Berkeley, 2001. |
미소장 |
| 32 |
H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via online boosting. Proceedings of British Machine Vision Conference, pages 47-56, 2006. |
미소장 |
| 33 |
ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING  |
미소장 |
| 34 |
H. Ling and K. Okade. Diffusion distance for histogram comparison. Proceedings of IEEE International Conference on Computer Vision, 2006 |
미소장 |
| 35 |
A Direct Formulation for Sparse PCA Using Semidefinite Programming  |
미소장 |
| 36 |
J. Corander, M Ekdahl, and T. Koski. Parallell interacting MCMC for learning of topologies of graphical models. Data Min. Knowl. Discov., 17(3), 2007 |
미소장 |