본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
인공지능에 의한 개인 맞춤 패션 스타일 추천 서비스 사례 연구 = A case study on the recommendation services for customized fashion styles based on artificial intelligence 안효선, 권수희, 박민정 p.349-360

소방공무원의 장갑제작을 위한 손 치수 연구 = Hand sizing study for development of firefighting gloves 권채령, 장미나, 정다운, 김동은 p.416-426

한국 여자 군인 현 방한복의 치수 및 동작적합성 만족도에 관한 연구 = Satisfaction on fitness and motion suitability of Korean female military winter jacket 한현숙, 한현정 p.361-372
패션콘텐츠 미디어 환경 예측을 위한 해외 SPA 브랜드의 SNS 언어 네트워크 분석 = Estimating media environments of fashion contents through semantic network analysis from social network service of global SPA brands 전여선 p.427-439

직물을 구성하는 실의 시각적 혼색 효과 = Visual color mixing effect of yarns in textile fabrics 채영주 p.373-383
소비자 관점의 의복 디자인 평가 요소에 대한 탐색적 연구 = An exploratory study on apparel design evaluation criteria with consumers' perspectives : focusing on female college students majoring in apparel-fashion design in their 20s : 20대 의류-패션 디자인 전공 여대생을 중심으로 김선우 p.384-404

3D 인체데이터를 활용한 남성 정장재킷 패턴개발 연구 = A study on development of men's formal jacket pattern by 3D human body scan data : a focus on men's in their late 30s : 30대 후반 남성을 중심으로 신경희, 서추연 p.440-458
패션테라피 효과 유지에 대한 질적 접근 = Qualitative approach to maintaining the effect of fashion therapy 이새은, 이유리 p.311-326

고령 남자의 겨울철 모자 착용 효과 = Physiological and psychological effects of wearing winter cap in elderly males : 생리·심리적 검토 박준희, 이주영 p.405-415

Environmentally responsible apparel consumption and convertible dresses Sumin Koo, Yoon Jin Ma p.327-348

참고문헌 (40건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Anderson, C. (2008). The long tail: Why the future of business is selling less of more. New York, NY: Hyperion ebook. 미소장
2 Baek, Y. R., Kim, S. H. (2019, January 14). 버버리는 AI로위조품 판별…디지털 혁신 없인 ‘필패’ [Burberry uses AI to identify counterfeit goods...‘must fail’ without digital innovation]. Economy Chosun. Retrieved from http://economychosun.com/client/news/view.php?boardName=C24&t_num=13606393 미소장
3 Bhaskar, M. (2016). Curation (Y. Y. Choi, Trans.). Seoul: Yeamoon Archive Co., Ltd. (Original work published 2016) 미소장
4 China may match or beat America in AI. (2017, July 15). The Economist. Retrieved from https://www.economist.com/business/2017/07/15/china-may-match-or-beat-america-in-ai 미소장
5 Cho, S.-Y., Choi, J.-E., Lee, K.-H., & Kim, H.-W. (2015). An online review mining approach to a recommendation system. Information Systems Review, 17(3), 95‒111. doi:10.14329/isr.2015.17.3.095 미소장
6 Cho, Y., & Bang, J. (2011). Applying centrality analysis to solve the cold-start and sparsity problems in collaborative filtering. Journal of Intelligence and Information Systems, 17(3), 99‒114. 미소장
7 Dishman, L. (2014, February 28). The perfect fit? TrueFit's big data aims to solve a big e-commerce problem. Forbes. Retrieved from https://www.forbes.com/sites/lydiadishman/2014/02/28/the-perfect-fit-truefits-big-data-aims-to-solvea-big-e-commerce-problem/#12339d6857fe 미소장
8 Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1995). Consumer behavior (8th ed.). Fort Worth, TX: Dryden Press. 미소장
9 Fisher, L. A. (2017, April 27). Zara Just Launched An Online Shopping Tool That's A Total Game-Changer. Harper′s Bazaar. Retrieved from https://www.harpersbazaar.com/fashion/trends/a9566387/zara-shopping-sizing-trick/ 미소장
10 Jang, Y. R. (2018, July 6). 알리바바, 연말 ‘Fashion AI 스토어’ 오픈 [Alibaba opens ‘flashion AI store’ at the yearend]. The Industry News. Retrieved from http://www.tinnews.co.kr/15395 미소장
11 Ivyrevel. (2017, February 6). Custom data dress service. You-Tube. Retrieved from https://www.youtube.com/watch?time_continue=2&v=PUlF3rW8flU 미소장
12 Kim, B. M., Li, Q., Kim, S.-G., Lim, E. K., & Kim, J.-Y. (2004). A new approach combining content-based filtering and collaborative filtering for recommender systems. Journal of KISS: Software and Applications, 31(3), 332‒342. 미소장
13 Kim, C. E., & Lee, J. H. (2018). Trends of big data and artificial intelligence in the fashion industry. Journal of the Korean Society of Clothing and Textiles, 42(1), 148‒158. doi:10.5850/JKSCT.2018.42.1.148 미소장
14 Kim, J.-H., & Park, D. S. (2006). Development of the goods recommendation system using association rules and collaborating filtering. The Journal of Korean Association of Computer Education, 9(1), 71‒80. 미소장
15 Kim, J. M. (2018, December 9). 집짓는 3D프린터⋅제트엔진비행슈트...美타임 ‘올해의 발명품’ 눈길 [Home-building 3D printer⋅jet-engine flight suit...American Time's ‘Inventions of the Year,’ is drawing attention]. Newsis. Retrieved from http://www.newsis.com/view/?id=NISX20181207_0000495667&cID=13001&pID=13000 미소장
16 Kozaki, Y. (2017). 최신 인공지능 쉽게 이해하고 넓게 활용하기 [A book that understands the latest artificial intelligence](H. O. Kim Trans.). Paju: Wikibook. (Original work published 2016) 미소장
17 Experimental evidence of massive-scale emotional contagion through social networks. 네이버 미소장
18 Lee, J. Y. (2019, January 28). 입고 싶은 옷 사진 올리니...AI 가 찾아주네 [Upload a picture of what you want to wear, and AI will find it]. Sedaily. Retrieved from https://www.sedaily.com/NewsView/1VE7P9OIYN 미소장
19 Lee, K. H. (2018, April 15). 오드컨셉 시각지능AI ‘딥룩’, 패션상품 검색⋅추천 IMB ‘왓슨’과 협력 [Odd concept visual intelligence AI ‘Deep look’, search for fashion products and work with recommended IMB ‘Watson’]. The DigitalTimes. Retrieved from http://www.dt.co.kr/contents.html?article_no=2018041702101552660001&ref=naver 미소장
20 Lee, S. (2016). The effects of fashion curation service quality attributes on satisfaction, trust and purchase intention (Unpublished master's thesis). Yonsei University, Seoul. 미소장
21 Matsuo, Y. (2015). 인공지능과 딥러닝 [AI and deep learning](K. W. Park, Trans.). Seoul: Dongamnb. (Original work published 2015) 미소장
22 Mori, J. (2014, November 7). Japanese startup invents fashion coordination app based on artificial intelligence. The Bridge. Retrieved from http://thebridge.jp/en/2014/11/sensy 미소장
23 Nikkei Top Leader, & Nikkei Big Data. (Eds.). (2018). 일본기업은 AI를 어떻게 활용하는가 [How Japanese companies utilize AI] (H. W. Shin, Trans.). Seoul: Paperroad. (Original work published 2017) 미소장
24 Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. London: Penguin Books. 미소장
25 Park, C. (2018, August). 엄마가 내 몸에 꼭 맞는 옷 만들어준 듯 초연결 시대엔 ‘감동의 맞춤 패션’ 뜬다 [Just as the mother makes clothes that fit my body, the ‘impressive customized fashion’ of the hyper-connected age is drawing attention]. Dong-A Business Review. Retrieved from http://dbr.donga.com/article/view/1202/article_no/8774 미소장
26 Park, Y. N., & Kim, C. S. (2017). A study on the influence of fashion interest and personal taste on their attitude of Fashion Curation Service (FCS) and purchase intention of fashion products-Focused on people aged 20s to 30s who experienced FCS-. Journal of Basic Design & Art, 18(1), 173‒188. 미소장
27 Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. Proceedings of the ACM 1994Conference on Computer Supported Cooperative Work, USA, 175‒186. 미소장
28 Saba, E. (2017, June 2). Amazon echo look review. AFTNnews. Retrieved from http://www.aftvnews.com/amazonecho-look-review 미소장
29 Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Itembased collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web, Hong Kong, 285‒295. doi:10.1145/371920.372071 미소장
30 Seol, J. Y. (2018, June 14). 카트리나 레이크 스티치픽스CEO “바쁜 당신 위해 대신 옷 골라줄게요” [Katrina Lake Stitch Fix CEO “I will choose clothes for you when you are busy”]. The Korea Economic Daily. Retrieved from http://news.hankyung.com/article/2018061430231 미소장
31 Word of Mouth: A newsletter dedicated to speech & language in school-age children 네이버 미소장
32 Shin, D., Choi, K.-S., Yang, D., Han, J., Park, W., Nho, Y., & Park, J.-S. (2018). 4차 산업혁명, 일과 경영을 바꾸다[The fourth industrial revolution, changes work and management]. Seoul: Samsung Economic Research Institute. 미소장
33 Shin, M. J. (2018, May 8). 신세계몰, ‘쓱렌즈’ 서비스... “사진으로 상품 검색” [Shinsegae mall, ‘SSG Lens’ service... “searching for products with photographs”]. FNTIMES. Retrieved from http://cnews.fntimes.com/html/view.php?ud=201805081146515214b93a47988c_18 미소장
34 Suh, B. (2016). 콘텐츠 추천 알고리즘의 진화 [Evolution of content recommendation algorithms]. Broadcasting Trend &Insight, Vol. 5, 19‒24. Retrieved from http://www.kocca.kr/cop/trand/view.do?menuNo=202967&nttNo=5 미소장
35 Trends Magazine Special Reporting Team. (2017). 2018~2028 핫이슈 빅트렌드 [2018-2028 hot issue big-trend]. (C. O. Kwon, Trans.). Seoul: Hangseongb. (Original work publihed 2017) 미소장
36 Wei, S., Ye, N., Zhang, S., Huang, X., & Zhu, J. (2012, August). Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure. Proceedings of the 2012 International Conference on Computer Science and Service System, China, 2038‒2041. doi:10.1109/CSSS.2012.507 미소장
37 Zo, D. S. (2018, July 13). 미래 패션산업, ‘패셔놀로지’가이끈다 [Future fashion industry led by ‘Fashionology’]. Korea Fashion+TexNews. Retrieved from http://www.ktnews.com/sub/view.php?cdnews=107749 미소장
38 러플 스커트 [Ruffle skirt]. (2019, February 29). Naver Shopping. Retrieved from https://search.shopping.naver.com/search/all.nhn?query=%EB%9F%AC%ED%94%8C+%EC%8A%A4%EC%BB%A4%ED%8A%B8&cat_id=&frm=NVSHATC 미소장
39 패션의류 [Fashion clothing]. (2019, February 29). Naver Data Lab. Retrieved from https://datalab.naver.com/shoppingInsight/sCategory.naver 미소장
40 人工知能 「JINS BRAIN」開発プロジェクト[Artificial intelligence 「JINS BRAIN」 development project]. (2018). KAZAK. Retrieved from https://kazak.co.jp/works/jins-brain/ 미소장