본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

치아를 지지하는 치아주위 조직은 다양한 치주질환으로 인해 구조 및 기능적으로 문제가 발생하는데, 증상이 심한 경우 치아 자체를 상실 하는 경우도 있다. 치아의 상실은 건강과 삶의 질을 결정하는 중요한 부분으로 작용하기 때문에 치주질환으로 인한 치아상실 및 기능적 문제점을 적극적으로 예방하고 실질적으로 극복할 수 있는 기반 연구결과의 도출이 절실히 필요한 실정이다. 현재까지 다양한 치료방법 및 약물을 이용한 치주조직 재생과 치료에 관한 연구가 진행되고 있는데 이러한 내용을 뒷받침할 수 있는 연구기법 및 최신 연구결과를 본 논문에서 확인하고자 한다. 특히 발생생물학적 관점에서 치주조직의 형성과정 및 이에 관여하는 신호전달체계를 적용하는 방식의 치주조직 재생기법을 확인하고 이와 관련된 다양한 치주질환 실험 모델을 확인하고자 한다. 본 논문을 통해 보다 효율적인 치주질환 극복 기술이 개발될 수 있는 계기를 마련하고자 한다.

The tooth-supporting structures, which are collectively known as the periodontium, are disrupted in periodontal diseases. This disruption could lead to tooth loss at an advanced state. Therefore, the prevention and management of periodontal diseases are necessary to ensure a good quality of life. Different animal models are used to mimic the human periodontal disease conditions and examine the loss of tissues surrounding the teeth. The efficacy of various therapeutic compounds for the healing and regeneration of the disrupted structures were also examined. However, few studies have used animal models to examine the role of signaling molecules during the process of healing and regeneration. Since the signaling molecules play vital roles during the developmental processes, their role in the healing and regeneration of the periodontium must be evaluated based on the knowledge of developmental biology. This review highlights the process of periodontium development together with the role of signaling molecules. Furthermore, the disease conditions disrupting the periodontium and their severe consequences are also discussed. The different disease models commonly used for evaluation of the therapeutics and signaling molecules in periodontal diseases have also been reviewed, suggesting future research with a developmental biology approach in order to regenerate the periodontium.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Disease models for the functional restoration of the periodontium based on developmental biology = 치주염 극복 및 기능적 재생을 위한 발생생물학기반 치주질환모델 Nirpesh Adhikari, Yam Prasad Aryal, Chang-Hyeon An, Jo-Young Seo, Seo-Young An, Jae-Young Kim p. 9-18

아프리카산 발톱개구리의 치아형성띠 표지인자 pitx2 의 발현 = Pitx2 expression, an odontogenic band marker in Xenopus laevis 고병석, 홍지수, 박병건, 이영훈 p. 61-68

Cemental tear = 백악질 열리의 임상 및 방사선적 특징과 위험요인의 분석 : radiographic-clinical characteristics and its predisposing factors So-Jin Kim, Byung-Cheol Kang, Sun-Heon Kim, Hyun-Ju Chung p. 27-42

Localization of eruption-related molecules in developing rat incisors = 백서 절치 맹출 관련 인자 발현에 대한 면역형광염색 연구 Geum-Dong Han, Hae-Kyoung Shim, Se-Eun Kim, Jee-Hae Kang, Min-Seok Kim, Eun-Joo Lee, Sun-Hun Kim p. 1-8

구강편평상피세포암종에서 shikonin에 의한 상피간엽이행 억제 = Shikonin inhibits the epithelial-mesenchymal transition in oral squamous cell carcinoma 박단비, 박봉수, 강해미, 유수빈, 김인령 p. 51-59

Expression patterns of tenascin-N in the developing mandible = 발생중인 생쥐 하악에서 tenascin-N의 발현 양상 Sushan Zhang, Sung-Ho Park, Sangbin Oh, Young-Soo Jung, Jong-Min Lee, Han-Sung Jung p. 43-49

아프리카산 발톱개구리의 치아 발생과정에서 Bmp4의 발현 = Bmp4 expression during tooth development of Xenopus laevis 홍지수, 고병석, 정아위, 유양, 박병건, 이영훈 p. 19-26

참고문헌 (64건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Bhusari BM, Banavali K, Dere S, Makhnojia M (2015) Development Of Periodontium: A Star In The Making!!! Int J Med Sci Clin Invent. doi. org/10.18535/ijmsci/v2i8.09 미소장
2 Bartold PM, Walsh LJ, Narayanan AS (2000)Molecular and cell biology of the gingiva. Periodontol 2000 24:28–55. doi.org/10.1034/j.1600-0757.2000.2240103.x 미소장
3 Cho M IL, Garant PR (2000) Development and general structure of the periodontium. Periodontol 200024:9–27. doi.org/10.1034/j.1600-0757.2000.2240102.x 미소장
4 Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 4:a008425. doi.org/10.1101/cshperspect.a008425 미소장
5 Zeichner-David M, Oishi K, Su Z, et al (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–63. doi.org/10.1002/dvdy.10404 미소장
6 Hammarström L, Alatli I, Fong CD (1996) Origins of cementum. Oral Dis 2:63–9. doi.org/10.1111/j.1601-0825.1996.tb00205.x 미소장
7 Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle 네이버 미소장
8 Fleischmannova J, Matalova E, Sharpe PT, et al (2010) Formation of the tooth-bone interface. J Dent Res 89:108–15. doi.org/10.1177/0022034509355440 미소장
9 Li J, Parada C, Chai Y (2017) Cellular and molecular mechanisms of tooth root development. Development 144:374–384. doi.org/10.1242/dev.137216 미소장
10 Rooker SM, Liu B, Helms JA (2010) Role of Wnt signaling in the biology of the periodontium. Dev Dyn 239:140–7. doi.org/10.1002/dvdy.22003 미소장
11 Han P, Ivanovski S, Crawford R, Xiao Y (2015)Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration. J Bone Miner Res 30:1160–74. doi.org/10.1002/jbmr.2445 미소장
12 Cao Z, Zhang H, Zhou X, et al (2012) Genetic evidence for the vital function of Osterix in cementogenesis. J Bone Miner Res 27:1080–92. doi.org/10.1002/jbmr.1552 미소장
13 Choi H, Kim T-H, Yang S, et al (2017) A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis. Sci Rep 7:8160. doi.org/10.1038/s41598-017-08607-5 미소장
14 Wu Y, Yuan X, Perez KC, et al (2019) Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone 122:176–183. doi.org/10.1016/j.bone.2018.10.023 미소장
15 Choi H, Ahn YH, Kim TH, et al (2016) TGF-β Signaling Regulates Cementum Formation through Osterix Expression. Sci Rep 6:1–11. doi.org/10.1038/srep26046 미소장
16 Saito Y, Yoshizawa T, Takizawa F, et al (2002) A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2. J Cell Sci 115:4191–4200. doi.org/10.1242/jcs.00098 미소장
17 Yokoi T, Saito M, Kiyono T, et al (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327:301–311. doi.org/10.1007/s00441-006-0257-6 미소장
18 Wolfman NM, Hattersley G, Cox K, et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest 100:321–330. doi. org/10.1172/JCI119537 미소장
19 King GN, Cochrant DL (2002) Factors That Modulate the Effects of Bone Morphogenetic Protein-Induced Periodontal Regeneration: A Critical Review. J Periodontol 73:925–936. doi.org/10.1902/jop.2002.73.8.925 미소장
20 Wikesjö UME, Sorensen RG, Kinoshita A, et al (2004)Periodontal repair in dogs: Effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment:A pilot study. J Clin Periodontol 31:662–670. doi.org/10.1111/j.1600-051X.2004.00541.x 미소장
21 Ripamonti U, Petit JC (2009) Bone morphogenetic proteins, cementogenesis, myoblastic stem cells and the induction of periodontal tissue regeneration. Cytokine Growth Factor Rev 20:489–499. doi.org/10.1016/j.cytogfr.2009.10.016 미소장
22 Takayama S, Murakami S, Shimabukuro Y, et al (2001) Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res 80:2075–9. doi.org/10.1177/00220345010800121001 미소장
23 Yu S-J, Lee J-S, Jung U-W, et al (2015) Effect of fibroblast growth factor on injured periodontal ligament and cementum after tooth replantation in dogs. J Periodontal Implant Sci 45:111. doi.org/10.5051/jpis.2015.45.3.111 미소장
24 Mariotti A (1999) Dental plaque-induced gingival diseases. Ann Periodontol 4:7–19. doi.org/10.1902/annals.1999.4.1.7 미소장
25 Murakami S, Mealey BL, Mariotti A, Chapple ILC (2018) Dental plaque-induced gingival conditions. J Clin Periodontol 45 Suppl 2:S17–S27. doi. org/10.1111/jcpe.12937 미소장
26 Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27:409–19. doi. org/10.1111/j.2041-1014.2012.00663.x 미소장
27 Cekici A, Kantarci A, Hasturk H, Van Dyke TE (2014)Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000 64:57–80. doi.org/10.1111/prd.12002 미소장
28 Pereira SL da S, Praxedes YCM, Bastos TC, et al (2013) Clinical effect of a gel containing Lippia sidoides on plaque and gingivitis control. Eur J Dent 7:28–34. PMID: 23408652 미소장
29 Varela-Centelles P, Diz-Iglesias P, Estany-Gestal A, et al (2016) Periodontitis Awareness Amongst the General Public: A Critical Systematic Review to Identify Gaps of Knowledge. J Periodontol 87:403–15. doi. org/10.1902/jop.2015.150458 미소장
30 Chin Y-T, Cheng G-Y, Shih Y-J, et al (2017) Therapeutic applications of resveratrol and its derivatives on periodontitis. Ann N Y Acad Sci 1403:101–108. doi. org/10.1111/nyas.13433 미소장
31 Pihlstrom BL, Michalowicz BS, Johnson NW (2005)Periodontal diseases. Lancet (London, England)366:1809–20. doi.org/10.1016/S0140-6736(05)67728-8 미소장
32 Cochran DL (2008) Inflammation and bone loss in periodontal disease. J Periodontolgy 8 (Suppl.):1569–1576. doi.org/10.1111/j.1600-051X.1979. tb01927.x 미소장
33 Kassebaum NJ, Bernabé E, Dahiya M, et al (2014)Global burden of severe periodontitis in 1990-2010:a systematic review and meta-regression. J Dent Res 93:1045–53. doi.org/10.1177/0022034514552491 미소장
34 Chapple ILC, Van der Weijden F, Doerfer C, et al (2015) Primary prevention of periodontitis: managing gingivitis. J Clin Periodontol 42 Suppl 1:S71-6. doi. org/10.1111/jcpe.12366 미소장
35 Zaleckiene V, Peciuliene V, Brukiene V, Drukteinis S (2014) Traumatic dental injuries: etiology, prevalence and possible outcomes. Stomatologija 16:7–14. PMID: 24824054 미소장
36 Artun J, Behbehani F, Al-Jame B, Kerosuo H (2005)Incisor trauma in an adolescent Arab population: prevalence, severity, and occlusal risk factors. Am J Orthod Dentofacial Orthop 128:347–52. doi.org/10.1016/j.ajodo.2004.06.032 미소장
37 Proffit WR, Fields HW, Nixon WL (1983) Occlusal forces in normal- and long-face adults. J Dent Res 62:566–70. doi.org/10.1177/00220345830620051201 미소장
38 Brüllmann D, Schulze RK, D’Hoedt B (2011) The Treatment of Anterior Dental Trauma. Dtsch Aerzteblatt Online. doi.org/10.3238/arztebl.2011.0565 미소장
39 A systematic review of the cost of data collection for performance monitoring in hospitals 네이버 미소장
40 Thiesen G, Oliver DR, Araújo EA (2018) Orthodontic treatment of a patient with maxillary lateral incisors with dens invaginatus: 6-year follow-up. Am J Orthod Dentofacial Orthop 153:730–740. doi.org/10.1016/j.ajodo.2017.01.030 미소장
41 Juneja P, Kulkarni S, Raje S (2018) Prevalence of traumatic dental injuries and their relation with predisposing factors among 8-15 years old school children of Indore city, India. Clujul Med 91:328–335. doi. org/10.15386/cjmed-898 미소장
42 Sloan AJ, Taylor SY, Smith EL, et al (2013) A novel ex vivo culture model for inflammatory bone destruction. J Dent Res 92:728–34. doi. org/10.1177/0022034513495240 미소장
43 Oz HS, Puleo DA (2011) Animal Models for Periodontal Disease. J Biomed Biotechnol 2011:1–8. doi. org/10.1155/2011/754857 미소장
44 Dumitrescu AL, Abd-El-Aleem S, Morales-Aza B, Donaldson LF (2004) A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 31:596–603. doi.org/10.1111/j.1600-051X.2004.00528.x 미소장
45 Graves DT, Fine D, Teng Y-TA, et al (2008) The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J Clin Periodontol 35:89–105. doi.org/10.1111/j.1600-051X.2007.01172.x 미소장
46 Abe T, Hajishengallis G (2013) Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods 394:49–54. doi.org/10.1016/j.jim.2013.05.002 미소장
47 Kuhr A, Popa-Wagner A, Schmoll H, et al (2004)Observations on experimental marginal periodontitis in rats. J Periodontal Res 39:101–6. doi.org/10.1111/j.1600-0765.2004.00710.x 미소장
48 Rietschel ET, Kirikae T, Schade FU, et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–25. doi. org/10.1096/fasebj.8.2.8119492 미소장
49 Ngkelo A, Meja K, Yeadon M, et al (2012) LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4and Giα dependent PI-3kinase signalling. J Inflamm (Lond) 9:1. doi.org/10.1186/1476-9255-9-1 미소장
50 Graves DT, Kang J, Andriankaja O, et al (2012)Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol 15:117–32. doi.org/10.1159/000329675 미소장
51 Pokhrel NK, Kim Y-G, Kim HJ, et al (2019) A novel Bruton’s tyrosine kinase inhibitor, acalabrutinib, suppresses osteoclast differentiation and Porphyromonas gingivalis lipopolysaccharide-induced alveolar bone resorption. J Periodontol 90:546–554. doi. org/10.1002/JPER.18-0334 미소장
52 Sharma A, Inagaki S, Honma K, et al (2005) Tannerella forsythia-induced alveolar bone loss in mice involves leucine-rich-repeat BspA protein. J Dent Res 84:462–7. doi.org/10.1177/154405910508400512 미소장
53 Kesavalu L, Sathishkumar S, Bakthavatchalu V, et al (2007) Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 75:1704–12. doi.org/10.1128/IAI.00733-06 미소장
54 Lee SF, Andrian E, Rowland E, Marquez IC (2009)Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infect Immun 77:694–8. doi.org/10.1128/IAI.01004-08 미소장
55 Li Y, Messina C, Bendaoud M, et al (2010) Adaptive immune response in osteoclastic bone resorption induced by orally administered Aggregatibacter actinomycetemcomitans in a rat model of periodontal disease. Mol Oral Microbiol 25:275–92. doi.org/10.1111/j.2041-1014.2010.00576.x 미소장
56 Bainbridge B, Verma RK, Eastman C, et al (2010)Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 78:4560–9. doi.org/10.1128/IAI.00703-10 미소장
57 Choi M, Lee WM, Yun SH (2015) Intravital microscopic interrogation of peripheral taste sensation. Sci Rep 5:8661. doi.org/10.1038/srep08661 미소장
58 Okada Y, Hamada N, Kim Y, et al (2010) Blockade of sympathetic b-receptors inhibits Porphyromonas gingivalis-induced alveolar bone loss in an experimental rat periodontitis model. Arch Oral Biol 55:502–8. doi. org/10.1016/j.archoralbio.2010.04.002 미소장
59 A randomized study of open-flap surgery of 32 intrabony defects with and without adjunct bovine bone mineral treatment. 네이버 미소장
60 Bhattarai G, Poudel SB, Kook S-H, Lee J-C (2016)Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater 29:398–408. doi.org/10.1016/j.actbio.2015.10.031 미소장
61 Chen L-J, Hu B-B, Shi X-L, et al (2017) Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway. Arch Oral Biol 78:100–108. doi. org/10.1016/j.archoralbio.2017.01.019 미소장
62 Emingil G, Han B, Gürkan A, et al (2014) Matrix metalloproteinase (MMP)-8 and tissue inhibitor of MMP-1 (TIMP-1) gene polymorphisms in generalized aggressive periodontitis: gingival crevicular fluid MMP-8 and TIMP-1 levels and outcome of periodontal therapy. J Periodontol 85:1070–80. doi. org/10.1902/jop.2013.130365 미소장
63 Tang H, Mattheos N, Yao Y, et al (2015) In vivo osteoprotegerin gene therapy preventing bone loss induced by periodontitis. J Periodontal Res 50:434–43. doi. org/10.1111/jre.12224 미소장
64 Kawai M, Kataoka Y-H, Sonobe J, et al (2018)Non-surgical model for alveolar bone regeneration by bone morphogenetic protein-2/7 gene therapy. J Periodontol 89:85–92. doi.org/10.1902/jop.2017.170328 미소장