본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents

Performance of naphtha in compression ignition modes using multicomponent surrogate fuel model / Wonah Park ; Cheolwoong Park ; Yongrae Kim ; Gyubaek Cho 1

ABSTRACT 1

NOMENCLATURE 1

1. INTRODUCTION 1

2. METHODOLOGY 2

2.1. Development of Multicomponent Surrogate Fuel Models 2

2.2. Other Computational Models 4

3. MODEL VALIDATION 4

3.1. HN Model Validation 4

3.2. LN Model Validation 5

4. RESULTS AND DISCUSSION 6

4.1. Comparison of PRF and Multicomponent Surrogate Fuel Models 6

4.2. Comparison of Combustion Characteristics of Fuels : Experiment 7

4.3. Comparison of Combustion Characteristics of Fuels : Simulation 8

4.4. Effect of Injection Pressure 9

5. CONCLUSION 9

REFERENCES 10

초록보기

Gasoline compression ignition (GCI) engines have been considered a promising technology for achieving diesel-like efficiency with less NOx and soot emissions than diesel engines. In recent research, naphtha has emerged as a suitable fuel for GCI owing to its octane number and its potential to reduce CO2 and production costs. The present work develops a multicomponent surrogate fuel model for heavy and light naphtha fuels by matching their distillation profiles and covering the measured concentrations of the various hydrocarbon classes and properties. The developed naphtha multicomponent surrogate model shows better prediction results than the primary reference fuel (PRF) surrogate model and exhibits good agreement with the measured data. The performance of naphtha in compression ignition (CI) combustion modes is investigated using the surrogate model and engine experiments. Naphtha fuels under CI combustion modes show better soot, HC, and CO emissions than diesel owing to the longer ignition delay and higher burned gas temperature. Moreover, as naphtha fuels are less affected by the injection pressure, naphtha CI engines appear to operate at a lower injection pressure than diesel engines.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Method for classification of frontal collision events in passenger cars based on measurement of local component-specific decelerations André Leschke, Florian Weinert, Maximillian Obermeier, Stefan Kubica, Vincenzo Bonaiuto p. 785-794

보기
Optimization of three-wheel vehicle roof structures against rollover accidents Jesung Yoo, Hoon Huh p. 795-804

보기
Temperature analysis of wet clutch surfaces during clutch engagement processes based on friction pad patterns Jamin Kong, Siyoul Jang p. 813-822

보기
Optimized fast terminal sliding mode control for a half-car active suspension systems Ghazally Ibrahim Yousif Mustafa, Haoping Wang, Yang Tian p. 805-812

보기
Control of DPPS in vehicle using feed-forward decoupling Hao Chen, Chao Wang, Xi Chen, Xiaomin Lian p. 823-831

보기
Effect of the plasma jet ignition and flame kernel under the combustion process in a constant volume combustion chamber Mun Seok Choe, Kyung Tae Lee, Kwon Se Kim, Doo Seuk Choi p. 833-842

보기
Reduction of generated axial force by constant velocity joint using contact optimization of tripod joint Jun-Hee Wi, Kwang-Hee Lee, Chul-Hee Lee p. 855-864

보기
EGR transient operations in highly dynamic driving cycles Jose Galindo, Hector Climent, Benjamin Pla, Chaitanya Patil p. 865-879

보기
Performance of naphtha in compression ignition modes using multicomponent surrogate fuel model Wonah Park, Cheolwoong Park, Yongrae Kim, Gyubaek Cho p. 843-853

보기
Lane keeping control based on model predictive control under region of interest prediction considering vehicle motion states Zeng Li, Gaojian Cui, Shaosong Li, Niaona Zhang, Yunsheng Tian, Xiaoqiang Shang p. 1001-1011

보기
Diesel engine airpath controller via data driven disturbance observer Volkan Aran, Mustafa Unel p. 971-980

보기
Trajectory planning for automated parking systems using deep reinforcement learning Zhuo Du, Qiheng Miao, Changfu Zong p. 881-887

보기
Experimental verification of fault identification for overactuated system with a scaled-down electric vehicle Jinseong Park, Youngjin Park p. 1037-1045

보기
Trajectory planning algorithm using Gauss pseudospectral method based on vehicle-infrastructure cooperative system Yingxuan Zhu, Kegang Zhao, Haolin Li, Yanwei Liu, Quancheng Guo, Zhengtao Liang p. 889-901

보기
Integrated coordination control for distributed drive electric vehicle trajectory tracking Hongluo Li, Yutao Luo p. 1047-1060

보기
Lightweight bus body design and optimization for rollover crashworthiness Suphanut Kongwat, Pattaramon Jongpradist, Hiroshi Hasegawa p. 981-991

보기
Physical evidence of seat belt release in oblique frontal impact Sung-Woo Koh, Jae-Wan Lee p. 1029-1036

보기
Integrated stability control strategy of in-wheel motor driven electric bus Wenwei Wang, Wei Zhang, Yifan Zhao p. 919-929

보기
Collision avoidance of low speed autonomous shuttles with pedestrians Sukru Yaren Gelbal, Bilin Aksun-Guvenc, Levent Guvenc p. 903-917

보기
Effect of engine start and clutch slip losses on the energy management problem of a hybrid DCT powertrain Enrico Galvagno, Guido Guercioni, Giorgio Rizzoni, Mauro Velardocchia, Alessandro Vigliani p. 953-969

보기
Robust H∞ fault-tolerant lateral control of four-wheel-steering autonomous vehicles Jinghua Guo, Yugong Luo, Keqiang Li p. 993-1000

보기
Robust vehicle speed control using disturbance observer in hybrid electric vehicles Sangjoon Kim, Jae Sung Bang, Sungdeok Kim, Hyeongcheol Lee p. 931-942

보기
Direct yaw-moment control of electric vehicle with in-wheel motor drive system Daoyuan Liu, Song Huang, Sen Wu, Xiang Fu p. 1013-1028

보기
A study on the performance restoration of torque converters for passenger car 6-speed automatic transmissions with remanufacturing process technology Youngkyo Seo, Sungdo Hong, Dohyun Jung, Namhoon Chung p. 1061-1070

보기
Model-based control of synchronizer shifting process for trajectory tracking control Yan Zhang, Han Zhao, Mingming Qiu, Feifei Qin, Bingzhan Zhang p. 943-952

보기

참고문헌 (31건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Anand, K., Ra, Y., Reitz, R. D. and Bunting, B. (2011). Surrogate model development for fuels for advanced combustion engines. Energy & Fuels 25, 4, 1474-1484. 미소장
2 Anand, K., Reitz, R. D., Kurtz, E. and Willems, W. (2013). Modeling fuel and EGR effects under conventional and low temperature combustion conditions. Energy & Fuels 27, 12, 7827-7842. 미소장
3 Atef, N., Badra, J., Jaasim, M., Im, H. G. and Sarathy, S. M. (2018). Numerical investigation of injector geometry effects on fuel stratification in a GCI engine. Fuel, 214, 580-589. 미소장
4 Physical and chemical effects of low octane gasoline fuels on compression ignition combustion 네이버 미소장
5 Badra, J. A., Sim, J., Elwardany, A., Jaasim, M., Viollet, Y., Chang, J., Amer, A. and Im, H. G. (2016b). Numerical simulations of hollow-cone injection and gasoline compression ignition combustion with naphtha fuels. J. Energy Resources Technology 138, 5, 052202. 미소장
6 Beale, J. C. and Reitz, R. D. (1999). Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization and Sprays 9, 6, 623-650. 미소장
7 Chang, J., Viollet, Y., Amer, A. and Kalghatgi, G. (2013a). Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel. SAE Paper No. 2013-01-2701. 미소장
8 Chang, J., Kalghatgi, G., Amer, A., Adomeit, P., Rohs, H. and Heuser, B. (2013b). Vehicle demonstration of naphtha fuel achieving both high efficiency and drivability with EURO6 engine-out NOx emission. SAE Int. J. Engines 6, 1, 101-119. 미소장
9 Ciatti, S., Johnson, M., Adhikary, B. D., Reitz, R. D. and Knock, A. (2013). Efficiency and emissions performance of multizone stratified compression ignition using different octane fuels. SAE Paper No. 2013-01-0263. 미소장
10 Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill. New York, USA. 미소장
11 Hildingsson, L., Kalghatgi, G., Tait, N., Johansson, B. and Harrison, A. (2009). Fuel octane effects in the partially premixed combustion regime in compression ignition engines. SAE Paper No. 2009-01-2648. 미소장
12 Ignition studies of two low-octane gasolines 네이버 미소장
13 Javed, T., Nasir, E. F., Ahmed, A., Badra, J., Djebbi, K., Beshir, M., Ji, W., Mani Sarathy, S. and Farooq, A. (2017b). Ignition delay measurements of light naphtha:A fully blended low octane fuel. Proc. Combustion Institute 36, 1, 315-322. 미소장
14 Kabil, I., Sim, J., Badra, J. A., Eldrainy, Y., Abdelghaffar, W., Mubarak Ali, M. J., Ahmed, A., Sarathy, S. M., Im, H. G. and Elwardany, A. (2018). A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. Combustion Science and Technology 190, 7, 1218-1231. 미소장
15 Kim, D., Park, S. S. and Bae, C. (2018). Schlieren, Shadowgraph, Mie-scattering visualization of diesel and gasoline sprays in high pressure/high temperature chamber under GDCI engine low load condition. Int. J. Automotive Technology 19, 1, 1-8. 미소장
16 Kim, K. (2014). Performance Improvement by Stratified Combustion Strategy in Gasoline Direct-injection Compression-ignition Engines. Ph. D. Dissertation. KAIST. Daejeon, Korea. 미소장
17 Kolodziej, C. P., Ciatti, S., Vuilleumier, D., Adhikary, B. D. and Reitz, R. D. (2014). Extension of the lower load limit of gasoline compression ignition with 87 AKI gasoline by injection timing and pressure. SAE Paper No. 2014-01-1302. 미소장
18 Krishnasamy, A., Reitz, R. D., Willems, W. and Kurtz, E. (2013). Surrogate diesel fuel models for low temperature combustion. SAE Paper No. 2013-01-1092. 미소장
19 Naser, N., Jaasim, M., Atef, N., Chung, S. H., Im, H. G. and Sarathy, S. M. (2017). On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. Fuel, 207, 373-388. 미소장
20 Park, W., Ra, Y., Kurtz, E., Willems, W. and Reitz, R. D. (2015). Use of multiple injection strategies to reduce emission and noise in low temperature diesel combustion. SAE Paper No. 2015-01-0831. 미소장
21 Perini, F., Krishnasamy, A., Ra, Y. and Reitz, R. D. (2014). Computationally efficient simulation of multicomponent fuel combustion using a sparse analytical jacobian chemistry solver and high-dimensional clustering. J. Engineering for Gas Turbines and Power 136, 9, 091515. 미소장
22 Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G. and Pitsch, H. (2007). Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. SAE Paper No. 2007-01-0175. 미소장
23 Qi, J. (2014). Soot Formation in GDI/GTDI Engines. Ph. D. Dissertation. University of Wisconsin-Madison. Madison, Wisconsin, USA. 미소장
24 Ra, Y. and Reitz, R. D. (2008). A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combustion and Flame 155, 4, 713-738. 미소장
25 Ra, Y. and Reitz, R. D. (2009). A vaporization model for discrete multi-component fuel sprays. Int. J. Multiphase Flow 35, 2, 101-117. 미소장
26 Ra, Y. and Reitz, R. D. (2011). A combustion model for IC engine combustion simulations with multi-component fuels. Combustion and Flame 158, 1, 69-90. 미소장
27 Recent progress in gasoline surrogate fuels 네이버 미소장
28 Sellnau, M., Moore, W., Sinnamon, J., Hoyer, K., Foster, M. and Husted, H. (2015). GDCI multi-cylinder engine for high fuel efficiency and low emissions. SAE Int. J. Engines, 8, 2, 775-790. 미소장
29 Viollet, Y., Chang, J. and Kalghatgi, G. (2014). Compression ratio and derived cetane number effects on gasoline compression ignition engine running with naphtha fuels. SAE Int. J. Fuels and Lubricants 7, 2, 412-426. 미소장
30 Wang, B., Yang, H. Q., Shuai, S. J., Wang, Z., He, X., Xu, H. and Wang, J. (2013). Numerical resolution of multiple premixed compression ignition (MPCI) mode and partially premixed compression ignition (PPCI)mode for low octane gasoline. SAE Paper No. 2013-01-2631. 미소장
31 Yang, H., Shuai, S., Wang, Z. and Wang, J. (2014). Effect of injection timing on PPCI and MPCI mode fueled with straight-run naphtha. J. Engineering for Gas Turbines and Power 136, 3, 031501. 미소장