1 |
R.A. Jules, R. Tapamo, and A.O. Adewumi, “Age Estimation via Face Images: a Survey,”EURASIP Journal on Image and Video Processing, Article No. 42, pp. 1-35, 2018. |
미소장 |
2 |
P. Punyani, R. Gupta, and A. Kumar, “Neural Networks for Facial Age Estimation: a Survey on Recent Advances,” Artificial Intelligence Review, Vol. 53, pp. 3299–3347, 2020. |
미소장 |
3 |
K. Oh, and S.-K. Kwon, “Implementation of Character Floating Hologram by Age and Gender Recognitions using Depth Images,”Journal of Korea Multimedia Society, Vol. 22, No. 2, pp. 146-156, 2019. |
미소장 |
4 |
S. Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks,” arXiv Preprint, arXiv:1706.05098, 2017. |
미소장 |
5 |
A.G. Howard, et al., “Mobilenets: Efficient Convolutional Neural Networks For Mobile Vision Applications,” arXiv Preprint, arXiv:1704.04861, 2017. |
미소장 |
6 |
R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd Edition, Wiley. |
미소장 |
7 |
R. Caruana, “Multitask Learning,” Machine Learning, Vol. 28, pp. 41-75, 1997. |
미소장 |
8 |
R. Rothe, R. Timofte, and L. Van Gool, “Dex:Deep Expectation of Apparent Age from a Single Image,” Proc. IEEE Int. Conf. on Computer Vision Workshops, pp. 252-257, 2015. |
미소장 |
9 |
H. Pan, H. Han, S. Shan, and X. Chen, “Mean-Variance Loss for Deep Age Estimation from a Face,” IEEE Conf. on Computer Vision and Pattern Recognition, pp. 5285-5294, 2018. |
미소장 |
10 |
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv Preprint, arXiv: 1409.1556, 2015. |
미소장 |
11 |
E. Agustsson, R. Timofte, and L. Van Gool, “Anchored Regression Networks Applied to Age Estimation and Super Resolution,” Int. Conf. on Computer Vision, pp. 1652-1661, 2017 |
미소장 |
12 |
G. Levi and T. Hassner. “Age and Gender Classification Using Convolutional Neural NetWorks,” IEEE Conf. on Computer Vision and Pattern Recognition, pp. 34-42, 2015. |
미소장 |
13 |
M. Duan, et al. “A Hybrid Deep Learning CNN –ELM for Age and Gender Classification,”Neurocomputing, Vol. 275, pp. 448-461, 2018. |
미소장 |
14 |
S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao, “Using Ranking-CNN for age estimation,”IEEE Conf. on Computer Vision and Pattern Recognition, pp. 5183-5192, 2017. |
미소장 |
15 |
B.-B. Gao, H.-Y. Zhou, J. Wu, and X. Geng, ‘‘Age Estimation Using Expectation of Label Distribution Learning,” Proceedings of the 27th. International Joint Conference on Artificial Intelligence, pp. 712-718, 2018. |
미소장 |
16 |
O. Agbo-Ajala and S. Viriri, “A Lightweight Convolutional Neural Network for Real and Apparent Age Estimation in Unconstrained Face Images,” IEEE Access, Vol. 8, pp. 162800-162808, 2020. |
미소장 |
17 |
H. Sun, H. Pan, H. Han, and S. Shan, “Deep Conditional Distribution Learning for Age Estimation,” IEEE Transactions on Information Forensics and Security, Vol. 16, pp. 4679-4690, 2021. |
미소장 |
18 |
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2261-2269, 2017. |
미소장 |
19 |
N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shuffleenet v2: Practical Guidelines for Efficient CNN Architecture Design,“ Proceedings of the European Conference on Computer Vision (ECCV) , pp. 116-131, 2018. |
미소장 |
20 |
T.-Y. Yang, et al., “SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation,”Int. Joint Conf. on Artificial Intelligence Organization, pp. 1078-1084, 2018. |
미소장 |
21 |
X. Liu, Y. Zou, H. Kuang, and X. Ma, “Face Image Age Estimation Based on Data Augmentation and Lightweight Convolutional Neural Network,” Symmetry, Vol. 146, Issue 1, 146, 2020. |
미소장 |
22 |
B.I. Yoo, et al., “Deep Facial Age Estimation Using Conditional Multi-Task Learning with Weak Label Expansion,” IEEE Signal Processing Letters, Vol. 25, No. 6, pp. 808-812, 2018. |
미소장 |
23 |
Y. Yang, et al., “Video System for Human Attribute Analysis Using Compact Convolutional Neural Network,” IEEE International Conference on Image Processing (ICIP), pp. 584-588. 2016. |
미소장 |
24 |
J.-H. Lee, et al., “Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile AppliCations,” IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 162-165, 2018. |
미소장 |
25 |
N. Liu, F. Zhang, and F. Duan, “Facial Age Estimation Using a Multi-Task Network Combining Classification and Regression,” IEEE Access, Vol. 8, pp. 92441-92451, 2020. |
미소장 |
26 |
N. Yu, et al., “Ensemble Learning for Facial Age Estimation within Non-Ideal Facial Imagery,”IEEE Access, Vol. 7, pp. 97938-97948, 2019. |
미소장 |
27 |
Y. Zhou, H. Huttunen, and T. Elomaa, “Using Multiple Losses for Accurate Facial Age EstimaTion,” arXiv Preprint, arXiv:2106.09393, 2021. |
미소장 |
28 |
K. Ricanek and T. Tesafaye, “Morph: A longitudinal image database of normal adult ageprogression,”7th Int. Conf. on Automatic Face and Gesture Recognition, 2006. |
미소장 |
29 |
The FG-NET Aging Database, https://yan weifu.github.io/FG_NET_data/ (accessed November 30, 2021). |
미소장 |
30 |
MegaAge-Asian Dataset, http://mmlab.ie.cuhk. edu.hk/projects/MegaAge/ (accessed November 30, 2021). |
미소장 |
31 |
J. Cheng, Y. Li, J. Wang, L. Yu, and S. Wang, “Exploiting Effective Facial Patches for Robust Gender Recognition,” Tsinghua Science and Technology, Vol. 24, pp. 333-345, 2019. |
미소장 |
32 |
IMDB-WIKI, https://data.vision.ee.ethz.ch/cvl/rrothe/IMDB-WIKI/ (accessed November 30, 2021). |
미소장 |
33 |
Jetson Nano Board, https://elinux.org/Jetson_Nano (accessed November 30, 2021). |
미소장 |