권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
머신러닝을 이용한 CNC 가공 불량 발생 예측 모델 = Prediction model of CNC processing defects using machine learning / 한용희 1
요약 1
Abstract 1
1. 서론 2
2. 연구 방법 및 분석 결과 3
3. 분석 결과 5
4. 결론 6
REFERENCES 6
[저자소개] 7
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | S. H. Kang, & S. B. Kim. (2016). Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing, Journal of Korean Institute of Industrial Engineers, 42(6), 395-403. DOI : 10.7232/JKIIE.2016.42.6.395 | 미소장 |
2 | J. S. Kong. (2018), Optimization of the Tool Life Prediction Using Genetic Algorithm, Journal of the Korea Academia-Industrial cooperation Society, 19(11), 338-343. DOI : 10.5762/KAIS.2018.19.11.338 | 미소장 |
3 | D. J. Oh, B. S. Sim,, & W. Lee. (2021). Tool Wear Monitoring during Milling Using an Autoassociative Neural Network, Transactions of the Korean Society of Mechanical Engineers – A, 45(4), 285-291. DOI : 10.3795/KSME-A.2021.45.4.285 | 미소장 |
4 | R. Teti, K. Jemielniak, G. O’Donnell,, & D. Dornfeld. (2010). Advanced Monitoring of Machining Operations, CIRP Annals, 59(2), 717-739. DOI : 10.1016/j.cirp.2010.05.010 | 미소장 |
5 | Y. C. Liu, X. F. Hu,, & S. X. Sun. (2019, July). Remaining Useful Life Prediction of Cutting Tools Based on Support Vector Regression, IOP Conference Series: Materials Science and Engineering, 576, 1-8. DOI : 10.1088/1757-899X/576/1/012021 | 미소장 |
6 | P. Stavropoulos, A. Papacharalampopoulos, E. Vasiliadis,, & G. Chryssolouris. (2016). Tool Wear Predictability Estimation in Milling Based on Multi-sensorial Data, The International Journal of Advanced Manufacturing Technology, 82(1-4), 509-521. DOI : 10.1007/s00170-015-7317-6 | 미소장 |
7 | X. Li, A. Djordjevich, & P. K. Venuvinod. (2000). Current-sensor-based Feed Cutting Force Intelligent Estimation and Tool Wear Condition Monitoring, IEEE Transactions on Industrial Electronics, 47(3), 697-702. DOI : 10.1109/41.847910 | 미소장 |
8 | K. Lee, S. Park, S. Sung,, & D. Park. (2019). A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique, Journal of the Korea Convergence Society, 10(11), 15-21. DOI : 10.15207/JKCS.2019.10.11.015 | 미소장 |
9 | J. V. Abellan-Nebot, & F. R. Subirón. (2010). A Review of Machining Monitoring Systems Based on Artificial Intelligence Process Models, The International Journal of Advanced Manufacturing Technology, 47(1), 237-257. DOI : 10.1007/s00170-009-2191-8 | 미소장 |
10 | C. Drouillet, J. Karandikar, C. Nath, A. C. Journeaux, M. El Mansori,, & T. Kurfess. (2016). Tool Life Predictions in Milling Using Spindle Power with the Neural Network Technique, Journal of Manufacturing Processes, 22, 161-168. DOI : 10.1016/j.jmapro.2016.03.010 | 미소장 |
11 | da Silva, R. H. L., M. B. da Silva,, & A. Hassui. (2016). A Probabilistic Neural Network Applied in Monitoring Tool Wear in the End Milling Operation via Acoustic Emission and Cutting Power Signals, Machining Science and Technology, 20(3), 386-405. DOI : 10.1080/10910344.2016.1191026 | 미소장 |
12 | J. A. Duro, J. A. Padget, C. R. Bowen, H. A. Kim,, & A. Nassehi. (2016). Multi-sensor Data Fusion Framework for CNC Machining Monitoring, Mechanical Systems and Signal Processing, 66, 505-520. DOI : 10.1016/j.ymssp.2015.04.019 | 미소장 |
13 | A. J. Torabi, M. J. Er, X. Li, B. S. Lim, L. Zhai, R. J. Oentaryo,, & J. M. Zurada. (2013). A Survey on Artificial Intelligence-based Modeling Techniques for High Speed Milling Processes, IEEE Systems Journal, 9(3), 1069-1080. DOI : 10.1109/JSYST.2013.2282479 | 미소장 |
14 | S. T. Jung, S. H. Kim, H. J. Kim,, & S. Y. Baek. (2018). Prediction and Experiments of Cutting Forces in Down Milling of Hardened Mold Steel, Journal of the Korean Society of Manufacturing Technology Engineers, 27(4), 346-350. DOI : 10.7735/ksmte.2018.27.4.346 | 미소장 |
15 | Ministry of SMEs and Startups of Korea. (2020). CNC Machine AI Dataset. Korea AI Manufacturing Platform (KAMP). https://https://kamp-ai.kr | 미소장 |
16 | A. Géron. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.