1 |
Ahn, B.K., D.Y. Ko, H.J. Choi, and H.G. Chon. 2020. Distribution of water-soluble nutrients and physico-chemical properties of upland and orchard field soils in Jeonbuk province. Korea J. Soil Sci. Fert. 53:375-381. |
미소장 |
2 |
Breiman, L. 2001. Random forests. Mach. Learn. 45:5-32. |
미소장 |
3 |
Calle, J.L.P., M. Ferreiro-Gonzalez, A. Ruiz-Rodriguez, G.F. Barbero, J.A. Alvarez, M. Palma, and J. Ayuso. 2021. A methodology based on FT-IR data combined with random forest model to generate spectralprints for the characterization of high-quality vinegars. Foods 10:1141. |
미소장 |
4 |
Chaplot, V., M. Bernoux, C. Walter, P. Curmi, and U. Herpin. 2001. Soil carbon storage prediction in temperate hydromorphic soils using a morphologic index and digital elevation model. Soil Sci. 166:48-60. |
미소장 |
5 |
Florinsky, I.V., R.G. Eilers, G. Manning, and L. Fuller. 2002. Prediction of soil properties by digital terrain modelling. Environ. Modell. Software 17:295-311. |
미소장 |
6 |
Franklin, J. 2005. The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27:83-85. |
미소장 |
7 |
Grimm, R., T. Behrens, M. Märker, and H. Elsenbeer. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis. Geoderma 146:102-113. |
미소장 |
8 |
Hastie, T., R. Tibshirani, J.H. Friedman, and J.H. Firedman. 2009. The elements of statistical leargnin: data mining, inference, and prediction. Springer, New York, USA. |
미소장 |
9 |
Hwang, H.Y., S.H. Kim, M.S. Kim, D.W. Le, J.E. Rim, J.H. Shim, and S.J. Park. 2019. Soil organic carbon fractions and stocks as affected by organic fertilizers in rice paddy soil. Korean J. Soil Sci. Fert. 52:520-529. |
미소장 |
10 |
Jeong, G.Y. 2018. Spatial prediction and economic evaluation of soil carbon stocks using digital soil mapping in an agricultural landscape. Geogr. J. Korea 52:389-401. |
미소장 |
11 |
Karhu, K., A.I. Gärdenäs, J. Heikkinen, P. Vanhala, M. Tuomi, and J. Liski. 2012. Impacts of organic amendements on carbon stocks of an agricultural soil—Comparison of model-simulations to measurements. Geoderma 189:606-616. |
미소장 |
12 |
Kim, H.J., S.K. Kim, S.W. Kim, K.J. Kwak, and O.D. Kwon. 2021. Changes in chemical properties of orchard soils in Jeonnam province between 2002 and 2018. Korean J. Soil Sci. Fert. 54:1-9. |
미소장 |
13 |
Kim, J. and S. Grunwald. 2016. Assessment of carbon stocks in the topsoil using random forest and remote sensing images. J. Environ. Qual. 45:1910-1918. |
미소장 |
14 |
KMA (Korea Meteorological Administration). 2018. Annual climatological reports. Seoul, Korea. |
미소장 |
15 |
Lal, R. 2008. Carbon sequestration. Philos. Trans. R. Soc. B: Biol. Sci. 363:815-830. |
미소장 |
16 |
Lee, J.H., J.H. Im, K.M. Kim, and J. Heo. 2015. Change analysis of aboveground forest carbon stocks according to the land cover change using multi-temporal Landsat TM images and machine learning algorithms. J. Korean Assoc. Geogr. Inf. Stud. 18:81-99. |
미소장 |
17 |
Lee, Y.H., M.S. Kim, S.J. Park, H.Y. Hwang, and S.H. Kim. 2020. Assessment of soil organic carbon fractions and stocks under different farming practice in a single maize cropping system. Korean J. Soil Sci. Fert. 53:626-634. |
미소장 |
18 |
Lim, S.S., H.I. Yang, H.J. Park, S.I. Park, B.S. Seo, K.S. Lee, S.H. Lee, S.M. Lee, H.Y. Kim, and J.H. Ryu. 2020. Land-use management for sustainable rice production and carbon sequestration in reclaimed coastal tideland soils of South Korea: A review. Soil Sci. Plant Nutr. 66:60-75. |
미소장 |
19 |
Nabiollahi, K., S. Eskandari, R. Taghizadeh-Mehrjardi, R. Kerry, and J. Triantafilis. 2019. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Manag. 10:63-77. |
미소장 |
20 |
Nguyen, T.T., T.D. Pham, C.T. Nguyen, J. Delfos, R. Archibald, K.B. Dang, N.B. Hoang, W. Guo, and H.H. Ngo. 2022. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 804:150187. |
미소장 |
21 |
Park, H.J., B.S. Seo, Y.J. Jeong, H.I. Yang, S.I. Park, N.R. Baek, J.H. Kwak, and W.J. Choi. 2022. Soil salinity, fertility and carbon content, and rice yield of salt-affected paddy with different cultivation period in southwestern coastal area of South Korea. Soil Sci. Plant Nutr. https://doi.org/10.1080/00380768.2021.1967082. |
미소장 |
22 |
Powers, J.S. and W.H. Schlesinger. 2002. Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma 109:165-190. |
미소장 |
23 |
Schmidt, M.W., M.S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I.A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, and D.A. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49-56. |
미소장 |
24 |
Smith, P. 2012. Soils and climate change. Curr. Opin. Environ. Sustainability 4:539-544. |
미소장 |
25 |
Sothe, C., A. Gonsamo, J. Arabian, and J. Snider. 2022. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma 405:115402. |
미소장 |
26 |
Thompson, J.A. and R.K. Kolka. 2005. Soil carbon storage estimation in a forested watershed using quantitative soillandscape modeling. Soil Sci. Soc. Am. J. 69:1086-1093. |
미소장 |
27 |
Thompson, J.A., E.M. Pena-Yewtukhiw, and J.H. Grove. 2006. Soil-landscape modeling across a physiographic region:Topographic patterns and model transportability. Geoderma 133:57-70. |
미소장 |
28 |
Wang, B., J.M. Gray, C.M. Waters, M.R. Anwar, S.E. Orgill, A.L. Cowie, P. Feng, and D.L. Liu. 2022. Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia. Geoderma 405:115442. |
미소장 |
29 |
Wiesmeier, M., L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Ließ, and N. Garcia-Franco. 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333:149-162. |
미소장 |
30 |
Yao, D., X. Zhan, and C.K. Kwoh. 2019. An improvved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinformatics 20:1-14. |
미소장 |
31 |
Zeraatpisheh, M., Y. Garosi, H.R. Owliaie, S. Ayoubi, R. Taghizadeh-Mehrjardi, T. Scholten, and M. Xu. 2022. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 208:105723. |
미소장 |
32 |
Zhou, T., Y. Geng, J. Chen, M. Liu, D. Haase, and A. Lausch. 2020. Mapping soil organic carbon content using multisource remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 114:106288. |
미소장 |