권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
관형 철탑 볼트 풀림 진단을 위한 음향방출 신호의 특징 분석 = Feature analysis of acoustic emission signals for diagnosis of loosened bolt in tubular steel tower / 박계륜 ; 이정준 ; 유현탁 ; 문영빈 ; 김현식 ; 김춘배 ; 최병근 1
ABSTRACT 1
1. 서론 1
2. 실험 2
2.1. 실험 대상 2
2.2. 실험 방법 2
2.3. 음향방출신호 비교 3
3. 음향방출 신호 특징 분석 4
3.1. 음향방출 신호 특징분류 4
3.2. Raw data 특징 분석 5
3.3. Band-pass filter 범위 설정 및 특징 비교 결과 6
3.4. 특징 분석 결과 7
4. 결론 8
References 8
[저자소개] 9
We conducted an acoustic emission test for the loosened bolt diagnosis of tubular steel towers. Signal processing techniques and machine learning were applied to acoustic emission signals to confirm the classification possibility of the bolt fastening strength. Consequently, a clear difference between the fastened condition of the bolt and the loosened condition was observed; however, signals with different bolt fastening strengths were not classified. In this process, it was confirmed that the bolt fastening strength was classified up to 74.3N·m using a band-pass filter. In conclusion, we confirmed the performance possibility of the loosened bolt diagnosis through acoustic emission signals.
We conducted an acoustic emission test for the loosened bolt diagnosis of tubular steel towers. Signal processing techniques and machine learning were applied to acoustic emission signals to confirm the classification possibility of the bolt fastening strength. Consequently, a clear difference between the fastened condition of the bolt and the loosened condition was observed; however, signals with different bolt fastening strengths were not classified. In this process, it was confirmed that the bolt fastening strength was classified up to 74.3N·m using a band-pass filter. In conclusion, we confirmed the performance possibility of the loosened bolt diagnosis through acoustic emission signals.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Lee, D. C., Bae, U. L., Kim, W. J. and Min, B. Y., 2007, UsN Based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower, The Transaction of the Korean Institute of Electrical Engineers, Vol. 56, No. 1, pp. 56~62. | 미소장 |
2 | Song, J. H., Kim, J. W., Kim, M. J. and Koo, J. S., 2021, Study on the Bolt Looseness Pattern Analysis of Ball-nut Assembly in Urban Train’s Electric Door Using Condition Diagnostic Sensor, Journal of the Korean Society for Urban Railway, Vol. 9, No. 2, pp. 883~890. | 미소장 |
3 | Seo, J. J., Hwang, J. H., Park, K. Y. and Hong, S. T., 2011, Recent Developments in Monitoring of Friction Stir Spot Welding Process Using Acoustic Emissions, Journal of Welding and Joining, Vol. 29, No. 5, pp. 31~36. | 미소장 |
4 | Ahn, B. H., Kim, Y. H., Lee, J. M., Lee, J. H. and Choi, B. K., 2014, Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 24, No. 7, pp. 555~561. | 미소장 |
5 | Min, T. H., Yu, H. T., Kim, H. J., Choi, B. G., Kim, H. S., Lee, G. S. and Kang, S. G., 2021, Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower, Journal of the Korea Institute of Information and Communication Engineering, Vol. 25, No. 4, pp. 515~522. | 미소장 |
6 | Yu, H. T., Min, T. H., Kim, H. J., Kang, S. G., Kang, D. Y. and Choi, B. G., 2021, Feature Analysis Based on Acoustic Emission Signal Processing for Tubular Steel Tower Condition Monitoring, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 31, No. 2, pp. 195~202. | 미소장 |
7 | Ha, J. M., Ahn, B. H. and Choi, B. K., 2017, Feature Analysis Based on Genetic Algorithm for Diagnosis of Misalignment, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 27, No. 2, pp. 189~194. | 미소장 |
8 | Kim, J. Y., Kim, J. M., Choi, B. K. and Shon, S. M., 2016, Bearing Fault Diagnosis Using Adaptive Self-Tuning Support Vector Machine, Proceedings of the Korean Society of Computer Information Conference, Vol. 24, No. 1, pp. 19~20. | 미소장 |
9 | Park, D. H., Ahn, B. H., Kim, H. J., Ha, J. M., Lim, G. M. and Choi, B. K., 2017, Application of Feature Analysis of Ultrasound for Diagnosis, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 27, No. 5, pp. 566~572. | 미소장 |
10 | Lee, J. H., 2014, Characteristic Analysis for Complex Defects Using Acoustic Emission Signal, Master’s Dissertation, Gyeongsang National University Graduate School. | 미소장 |
11 | Choi, Y. O., Kim, J. M., Ahn, B. H. and Choi, B. K., 2020, Feature Analysis of Acoustic Emission and Vibration Signal According to Pipe Cracking Shape and Valve Opening/Closing, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 30, No. 1, pp. 5~10. | 미소장 |
12 | Park, J. S., Ju, W. Y. and Jeong, B. S., 2011, Real-time Frequency Detection of Sinusoidal Signal Using Under-sampling Technique and FFT Algorithm, The Journal of Korean Institute of Information Technology, Vol. 9, No. 12, pp. 65~71. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내13
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.