본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향 = Effect of bacteria in soil on microbiologically influenced corrosion behavior of underground X65 pipeline / 최병학 ; 한성희 ; 김대현 ; 김우식 ; 김철만 ; 최광수 1

Abstract 1

1. 서론 1

2. 실험방법 2

3. 실험결과 3

3.1. 초기 및 안정기 부식 형상 3

3.2. 배관 표면 부식 성분 분석 3

3.3. 배관 단면 부식층 분석 4

3.4. 배관 표면 및 단면 부식층 분석 6

4. 고찰 9

5. 결론 11

References 12

저자소개 12

초록보기

Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere.

The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/ 16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Application research on mechanical strength and durability of porous basalt concrete Yuelei Zhu, Jingchun Li, He Zhu, Long Jin, Qifang Ren, Yi Ding, Jinpeng Li, Qiqi Sun, Zilong Wu, Rui Ma, Won-Chun Oh p. 115-124

보기
Effect of sulfation on physicochemical properties of ZrO2 and TiO2 nanoparticles Karna Wijaya, Remi Ayu Pratika, Edhita Rahmawati Fitri, Prisnu Fadilah Prabani, Yufinta Candrasasi, Wahyu Dita Saputri, Sri Mulijani, Aep Patah, Arief Cahyo Wibowo p. 125-131

보기
Effect of Sn doping on the thermoelectric properties of P-Type Mg3Sb2 synthesized by controlled melting, pulverizing followed by vacuum hot pressing Md. Mahmudur Rahman, Il-Ho Kim, Soon-Chul Ur p. 132-138

보기
STD11 금형강 재열처리에 따른 미세조직 및 기계적 특성 = Microstructure and mechanical properties of STD11 steel according to reheat treatment 박기연, 권의표, 허기호 p. 139-145

보기
감액 특성 향상을 위한 하이브리드(Sb/Ca) 액식 연축전지 개발 = Development of hybrid (Sb/Ca) flooded lead-acid battery for minimizing water loss 송승윤, 임태섭, 김성준, 정연길, 양승철 p. 146-152

보기
이온층 에피택시법을 이용한 ZnO/Zn(OH)2 나노시트의 합성 = Synthesis of ZnO/Zn(OH)2 nanosheets using ionic layer epitaxy 정규현, 남동현, 류경희 p. 153-160

보기
냉간압연접합된 층상 AA6061/AA5052/AA6061/AA5052 알루미늄합금판재의 미세조직 및 기계적 성질 = Microstructure and mechanical properties of cold roll-bonded layered AA6061/AA5052/AA6061/AA5052 aluminum alloy sheet 조상현, 박보배, 이성희 p. 161-167

보기
토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향 = Effect of bacteria in soil on microbiologically influenced corrosion behavior of underground X65 pipeline 최병학, 한성희, 김대현, 김우식, 김철만, 최광수 p. 168-179

보기

참고문헌 (18건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 K. M. Usher, A. H. Kaksonen, I. Cole and D. Marney, Int. Biodeterioration Biodegrad., 93, 84 (2014). 미소장
2 L. Yu, J. Duan, X. Du, Y. Huang and B. Hou, Electrochem. Commun., 26, 101 (2013). 미소장
3 S. Yuan, B. Liang, Y. Zhao and S. O. Pehkonen, Corros. Sci., 74, 353 (2013). 미소장
4 R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Corros. Sci., 127, 1 (2017). 미소장
5 Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, J. Mater. Sci. Technol., 34, 1713(2018). 미소장
6 R. Melchers, Corros. Sci., 49, 3149 (2007). 미소장
7 R. Jeffrey and R. E. Melchers, Corros. Sci., 49, 2270(2007). 미소장
8 X. Shi, W. Yan, D. Xu, M. Yan, C. Yang, Y. Shan and K. Yang, J. Mater. Sci. Technol., 34, 2480 (2018). 미소장
9 D. Enning and J. Garrelfs, Appl. Environ. Microbiol., 80, 1226 (2014). 미소장
10 H. Liu and Y. F. Cheng, Electrochim. Acta, 253, 368(2017). 미소장
11 S. K. Ryu, Y. H. Kim and Y. D. Lee, Corros. Sci. of Korea, 25, 349 (1996). 미소장
12 F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra and A. E. Kakpovbia, J. Mater. Eng. Perform., 22, 3517 (2013). 미소장
13 J. Ress, G. Monrrabal, A. Díaz, J. Pérez-Pérez, J. Bastidas and D. M. Bastidas, Eng. Fail. Anal., 116, 104734(2020). 미소장
14 W. Liu, Eng. Fail. Anal., 42, 109 (2014). 미소장
15 B. Liu, M. Sun, F. Lu, C. Du and X. Li, Colloids Surf., B, 197, 111356 (2020). 미소장
16 D. Xu, Y. Li, F. Song and T. Gu, Corros. Sci., 77, 385(2013). 미소장
17 Y. Zhao, E. Zhou, D. Xu, Y. Yang, Y. Zhao, T. Zhang, T. Gu, K. Yang and F. Wang, Corros. Sci., 143, 281(2018). 미소장
18 D. Arun, R. Vimala and K. D. Ramkumar, Bioelectrochemistry, 135, 107546 (2020). 미소장