권호기사보기
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
|---|---|---|---|---|---|---|---|---|---|
| 연구/단체명을 입력해주세요. | |||||||||
|
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Contents
Pedestrian collision avoidance using deep reinforcement learning / Alireza Rafiei ; Amirhossein Oliaei Fasakhodi ; Farshid Hajati 1
ABSTRACT 1
NOMENCLATURE 1
1. INTRODUCTION 1
1.1. Related Works 2
2. MATERIALS AND METHODS 2
2.1. RL and DQN 2
2.2. Pedestrian Collision Avoidance Approach 3
2.3. Risk Degree 5
3. EXPERIMENTAL RESULTS 6
4. DISCUSSION 8
5. CONCLUSION 8
REFERENCES 9
| 번호 | 참고문헌 | 국회도서관 소장유무 |
|---|---|---|
| 1 | Anowar, S., Alam, M. D. and Raihan, M. A. (2008). Analysis of accident patterns at selected intersections of an urban arterial. Proc. 21st ICTCT Workshop, Melbourne, Australia. | 미소장 |
| 2 | Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T. M., Mutz, F., Veronese, L. d. P., Oliveira-Santos, T. and De Souza, A. F. (2020). Self-driving cars: A survey. Expert Systems with Applications, 165, 113816. | 미소장 |
| 3 | Belmonte, F. J., Martín, S., Sancristobal, E., Ruipérez-Valiente, J. A. and Castro, M. (2020). Overview of embedded systems to build reliable and safe ADAS and AD systems. IEEE Intelligent Transportation Systems Magazine (in press), 1–10. | 미소장 |
| 4 | Busoniu, L., Babuska, R. and De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38, 2, 156–172. | 미소장 |
| 5 | Chae, H., Kang, C. M., Kim, B., Kim, J., Chung, C. C. and Choi, J. W. (2017). Autonomous braking system via deep reinforcement learning. IEEE 20th Int. Conf. Intelligent Transportation Systems (ITSC), Yokohama, Japan. | 미소장 |
| 6 | De, S., Mukherjee, A. and Ullah, E. (2018). Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv: 1807. 06766. | 미소장 |
| 7 | Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. and Koltun, V. (2017). CARLA: An open urban driving simulator. Proc. 1st Annual Conf. Robot Learning, in PMLR, 78, 1–16. | 미소장 |
| 8 | Galvani, M. (2019). History and future of driver assistance. IEEE Instrumentation & Measurement Magazine 22, 1, 11–16. | 미소장 |
| 9 | Gelbal, S. Y., Guvenc, B. A. and Guvenc, L. (2020). Collision avoidance of low speed autonomous shuttles with pedestrians. Int. J. Automotive Technology 21, 4, 903–917. | 미소장 |
| 10 | Gu, S., Holly, E., Lillicrap, T. and Levine, S. (2017). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. IEEE Int. Conf. Robotics and Automation (ICRA), Singapore. | 미소장 |
| 11 | Hacohen, S., Shoval, S. and Shvalb, N. (2020). The paradox of pedestrian’s risk aversion. Accident Analysis &Prevention, 142, 105518. | 미소장 |
| 12 | Hamid, U. Z. A., Zakuan, F. R. A., Zulkepli, K. A., Azmi, M. Z., Zamzuri, H., Rahman, M. A. A. and Zakaria, M. A. (2017). Autonomous emergency braking system with potential field risk assessment for frontal collision mitigation. IEEE Conf. Systems, Process and Control (ICSPC), Karunya Nagar, Coimbatore, India. | 미소장 |
| 13 | Hojjati-Emami, K., Dhillon, B. and Jenab, K. (2012). Reliability prediction for the vehicles equipped with advanced driver assistance systems (ADAS) and passive safety systems (PSS). Int. J. Industrial Engineering Computations 3, 5, 731–742. | 미소장 |
| 14 | Hussain, Q., Feng, H., Grzebieta, R., Brijs, T. and Olivier, J. (2019). The relationship between impact speed and the probability of pedestrian fatality during a vehiclepedestrian crash: A systematic review and meta-analysis. Accident Analysis & Prevention, 129, 241–249. | 미소장 |
| 15 | Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R., Mujica, F., Coates, A. and Ng, A. Y. (2015). An empirical evaluation of deep learning on highway driving. arXiv: 1504. 01716. | 미소장 |
| 16 | Kanarachos, S., Christopoulos, S. R. G. and Chroneos, A. (2018). Smartphones as an integrated platform for monitoring driver behaviour: The role of sensor fusion and connectivity. Transportation Research Part C:Emerging Technologies, 95, 867–882. | 미소장 |
| 17 | Koehler, F. and Risteski, A. (2018). Representational power of ReLU networks and polynomial kernels: Beyond worst-case analysis. arXiv: 1805. 11405. | 미소장 |
| 18 | Lankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A. and Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. J. Injury and Violence Research 6, 2, 64–71. | 미소장 |
| 19 | Lee, D. and Yeo, H. (2016). Real-time rear-end collisionwarning system using a multilayer perceptron neural network. IEEE Trans. Intelligent Transportation Systems 17, 11, 3087–3097. | 미소장 |
| 20 | Li, D., Ranjitkar, P., Zhao, Y., Yi, H. and Rashidi, S. (2017a). Analyzing pedestrian crash injury severity under different weather conditions. Traffic Injury Prevention 18, 4, 427–430. | 미소장 |
| 21 | Li, J., Yao, L., Xu, X., Cheng, B. and Ren, J. (2020). Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving. Information Sciences, 532, 110–124. | 미소장 |
| 22 | Li, Z., Yu, Q., Zhao, X., Yu, M., Shi, P. and Yan, C. (2017b). Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Advances in Mechanical Engineering 9, 8, 1–21. | 미소장 |
| 23 | Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli, M. and Romano, D. (2020). Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. Robotics and Autonomous Systems, 131, 103568. | 미소장 |
| 24 | Lin, L., Zhang, D., Luo, P. and Zuo, W. (2020). Human Centric Visual Analysis with Deep Learning. Springer. Singapore. | 미소장 |
| 25 | Lucidi, F., Girelli, L., Chirico, A., Alivernini, F., Cozzolino, M., Violani, C. and Mallia, L. (2019). Personality traits and attitudes toward traffic safety predict risky behavior across young, adult, and older drivers. Frontiers in Psychology, 10, 536. | 미소장 |
| 26 | Malin, F., Norros, I. and Innamaa, S. (2019). Accident risk of road and weather conditions on different road types. Accident Analysis & Prevention, 122, 181–188. | 미소장 |
| 27 | McDonald, A. D., Lee, J. D., Schwarz, C. and Brown, T. L. (2018). A contextual and temporal algorithm for driver drowsiness detection. Accident Analysis & Prevention, 113, 25–37. | 미소장 |
| 28 | Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv:1312. 5602. | 미소장 |
| 29 | Pinchon, N., Cassignol, O., Nicolas, A., Bernardin, F., Leduc, P., Tarel, J.-P., Brémond, R., Bercier, E. and Brunet, J. (2018). All-weather vision for automotive safety: Which spectral band?. Int. Forum on Advanced Microsystems for Automotive Applications. Springer. Cham, Switzerland. | 미소장 |
| 30 | Pop, D. O. (2019). Detection of pedestrian actions based on deep learning approach. Studia Universitatis Babeş-Bolyai. Informatica, Babeș-Bolyai University. | 미소장 |
| 31 | Powell, W. B. (2021). From reinforcement learning to optimal control: A unified framework for sequential decisions. Handbook of Reinforcement Learning and Control. Springer. Cham, Switzerland. | 미소장 |
| 32 | Ramachandran, P., Zoph, B. and Le, Q. V. (2017). Swish: A self-gated activation function. arXiv: 1710. 05941. | 미소장 |
| 33 | Roh, C. G., Kim, J. and Im, I. (2020). Analysis of impact of rain conditions on ADAS. Sensors 20, 23, 6720. | 미소장 |
| 34 | Rosén, E. and Sander, U. (2009). Pedestrian fatality risk as a function of car impact speed. Accident Analysis &Prevention 41, 3, 536–542. | 미소장 |
| 35 | Savchenko, V. V. and Litarovich, V. V. (2020). Classification of tablesemantically binary relevant information for drivers in highly automated vehicles. IOP Conf. Series:Materials Science and Engineering 819, 1, 012042. | 미소장 |
| 36 | Schaul, T., Quan, J., Antonoglou, I. and Silver, D. (2015). Prioritized experience replay. arXiv: 1511. 05952. | 미소장 |
| 37 | Schrum, K. D., De Albuquerque, F. D. B., Sicking, D. L., Falle, R. K. and Reid, J. D. (2014). Correlation between crash severity and embankment geometry. J. Transportation Safety & Security 6, 4, 321–334. | 미소장 |
| 38 | Sewalkar, P. and Seitz, J. (2019). Vehicle-to-pedestrian communication for vulnerable road users: Survey, design considerations, and challenges. Sensors 19, 2, 358. | 미소장 |
| 39 | Shaaban, K., Muley, D. and Mohammed, A. (2018). Analysis of illegal pedestrian crossing behavior on a major divided arterial road. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 124–137. | 미소장 |
| 40 | Sombolestan, S. M., Rasooli, A. and Khodaygan, S. (2019). Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. J. Ambient Intelligence and Humanized Computing 10, 5, 1841–1850. | 미소장 |
| 41 | Tabata, T., Konet, H. and Kanuma, T. (2010). Development of Nissan approaching vehicle sound for pedestrians. EVS-25 Shenzhen, China 5, 9, 1–6. | 미소장 |
| 42 | Wang, P., Motamedi, S., Canas Bajo, T., Zhou, X., Zhang, T., Whitney, D. and Chan, C. Y. (2019a). Safety Implications of Automated Vehicles Providing External Communication to Pedestrians. Research Report No. UC-ITS-2019-12. | 미소장 |
| 43 | Wang, Y., He, H. and Sun, C. (2018). Learning to navigate through complex dynamic environment with modular deep reinforcement learning. IEEE Trans. Games 10, 4, 400–412. | 미소장 |
| 44 | Wang, Z., Wan, Q., Qin, Y., Fan, S. and Xiao, Z. (2019b). Intelligent algorithm in a smart wearable device for predicting and alerting in the danger of vehicle collision. J. Ambient Intelligence and Humanized Computing, 11, 3841–3852. | 미소장 |
| 45 | Wang, Z., Wan, Q., Qin, Y., Fan, S. and Xiao, Z. (2020). Research on intelligent algorithm for alerting vehicle impact based on multi-agent deep reinforcement learning. J. Ambient Intelligence and Humanized Computing 12, 1, 1337–1347. | 미소장 |
| 46 | Yin, S., Chen, H., Wu, Y., Li, Y. and Xu, J. (2018). Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Composite Structures, 201, 131–140. | 미소장 |
| 47 | Zai, A. and Brown, B. (2020). Deep Reinforcement Learning in Action. Manning Publications. Shelter Island, NY, USA. | 미소장 |
*표시는 필수 입력사항입니다.
| 전화번호 |
|---|
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
|---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내17
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.