권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
The aim of this study is to provide a clear and accessible method to obtain accurate true-stress strain data, and to extend the limited material data beyond the ultimate tensile strength (UTS) for AISI 304L. AISI 304L is used for the outer construction for some types of nuclear transport packages, due to its postyield ductility and high failure strain. Material data for AISI 304L beyond UTS is limited throughout literature. 3D digital image correlation (DIC) was used during a series of uniaxial tensile experiments. Direct method extracted data such as true strain and instantaneous cross-sectional area throughout testing such that the true stress-strain response of the material up to failure could be created. Post processing of the DIC data has a considerable effect on the accuracy of the true stress-strain data produced. Influence of subset size and smoothing of data was investigated by using finite element analysis to inverse model the force displacement response in order to determine the true stress strain curve. The FE force displacement response was iteratively adapted, using subset size and smoothing of the DIC data. Results were validated by matching the force displacement response for the FE model and the experimental force displacement curve.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Pacific Nuclear Transport Limited, Packages, 2021 accessed Mar. 15, 2021, https://www.pntl.co.uk/safety/packages/. | 미소장 |
2 | International Atomic Energy Agency, Regulations for the Safe Transport of Radioactive Material, 2018 Edition, 2018 [Online]. Available: http://www-ns. iaea.org/standards/. | 미소장 |
3 | K. Zhao, L. Wang, Y. Chang, J. Yan, Identification of post-necking stress-strain curve for sheet metals by inverse method, Mech. Mater. 92 (Jan. 2016)107-118, https://doi.org/10.1016/j.mechmat.2015.09.004. | 미소장 |
4 | M.S. Joun, J.G. Eom, M.C. Lee, A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method, Mech. Mater. 40 (7) (Jul. 2008) 586-593, https://doi.org/10.1016/j.mechmat.2007.11.006. | 미소장 |
5 | M. Dunand, D. Mohr, Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals, Int. J. Solid Struct. 47 (9) (May 2010)1130-1143, https://doi.org/10.1016/j.ijsolstr.2009.12.011. | 미소장 |
6 | L. Wang, W. Tong, Identification of post-necking strain hardening behavior of thin sheet metals from image-based surface strain data in uniaxial tension tests, Int. J. Solid Struct. 75 (76) (Dec. 2015) 12-31, https://doi.org/10.1016/j.ijsolstr.2015.04.038. | 미소장 |
7 | M. Kamaya and M. Kawakubo, “A Procedure for Determining the True Stress-Strain Curve over a Large Range of Strains Using Digital Image Correlation and Finite Element Analysis,” doi: 10.1016/j.mechmat.2011.02.007. | 미소장 |
8 | H.W.S. Sutton, A. Michael, Orteu Jean-Jos e, Image Correlation for Shape, Motion and Deformation Measurements, No. 2009, Boston, MA: Springer US, 2009. | 미소장 |
9 | P. Hariharan, Interferometry, in: Optical Interferometry, Elsevier, 2003, pp. 1-8. | 미소장 |
10 | W.H. Peters, W.F. Ranson, Digital imaging techniques in experimental stress analysis, Opt. Eng. 21 (3) (Jun. 1982), https://doi.org/10.1117/12.7972925. | 미소장 |
11 | M. Sutton, C. Mingqi, W. Peters, Y. Chao, S. McNeill, Application of an optimized digital correlation method to planar deformation analysis, Image Vis Comput. 4 (3) (1986) 143-150, https://doi.org/10.1016/0262-8856(86)90057-0. | 미소장 |
12 | M.A. Sutton, J. Yan, Computer vision for shape and deformation measurements:recent developments and applications, SAE Tech. Pap. 115 (2006)495-500, https://doi.org/10.4271/2006-01-0526. | 미소장 |
13 | Y. Bai, Effect of Loading History in Necking and Fracture Architected Materials Design and Fabrication Using Additive Manufacturing View Project [Online]. Available: https://www.researchgate.net/publication/38003378. | 미소장 |
14 | D. Mohr, M. Oswald, A new experimental technique for the multi-axial testing of advanced high strength steel sheets, Exp. Mech. 48 (1) (2008) 65-77, https://doi.org/10.1007/s11340-007-9053-9. | 미소장 |
15 | M. Dunand, D. Mohr, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng. Fract. Mech. 78 (17) (2011) 2919-2934, https://doi.org/10.1016/j.engfracmech.2011.08.008. | 미소장 |
16 | H. Ghadbeigi, C. Pinna, S. Celotto, Failure mechanisms in DP600 steel: initiation, evolution and fracture, Mater. Sci. Eng. A 588 (Dec. 2013) 420-431, https://doi.org/10.1016/j.msea.2013.09.048. | 미소장 |
17 | J. Li, G. Yang, T. Siebert, M.F. Shi, L. Yang, A method of the direct measurement of the true stressestrain curve over a large strain range using multi-camera digital image correlation, Opt Laser. Eng. 107 (Aug. 2018) 194-201, https://doi.org/10.1016/j.optlaseng.2018.03.029. | 미소장 |
18 | P.D. Versaillot, Y.F. Wu, Z.L. Zhao, Experimental study on the evolution of necking zones of metallic materials, Int. J. Mech. Sci. 189 (Jan. 2021) 106002, https://doi.org/10.1016/j.ijmecsci.2020.106002. | 미소장 |
19 | F. Zhu, P. Bai, J. Zhang, D. Lei, X. He, Measurement of true stress-strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation, Opt Laser. Eng. 65 (Feb. 2015) 81-88, https://doi.org/10.1016/j.optlaseng.2014.06.013. | 미소장 |
20 | H.C. Ho, K.F. Chung, X. Liu, M. Xiao, D.A. Nethercot, Modelling tensile tests on high strength S690 steel materials undergoing large deformations, Eng. Struct. 192 (November 2018) 305-322, https://doi.org/10.1016/j.engstruct. 2019.04.057, 2019. | 미소장 |
21 | S. Yaofeng, J.H.L. Pang, Study of optimal subset size in digital image correlation of speckle pattern images, Opt Laser. Eng. 45 (9) (2007) 967-974, https://doi.org/10.1016/j.optlaseng.2007.01.012. | 미소장 |
22 | J. Baldoni, G. Lionello, F. Zama, L. Cristofolini, Comparison of different filtering strategies to reduce noise in strain measurement with digital image correlation, J. Strain Anal. Eng. Des. 51 (6) (2016) 416-430, https://doi.org/10.1177/0309324716646690. | 미소장 |
23 | S. Yoneyama, Basic principle of digital image correlation for in-plane displacement and strain measurement, Adv. Compos. Mater. 25 (2) (Mar. 2016) 105-123, https://doi.org/10.1080/09243046.2015.1129681. | 미소장 |
24 | W. Tong, An evaluation of digital image correlation criteria for strain mapping applications, Strain 41 (4) (2005) 167-175, https://doi.org/10.1111/j.1475-1305.2005.00227.x. | 미소장 |
25 | B. Pan, H. Xie, Z. Wang, Equivalence of digital image correlation criteria for pattern matching, Appl. Opt. 49 (28) (2010) 5501-5509, https://doi.org/10.1364/AO.49.005501. | 미소장 |
26 | B. Pan, Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals, Meas. Sci. Technol. 29 (8) (2018), https://doi.org/10.1088/1361-6501/aac55b. | 미소장 |
27 | P. Reu, Stereo-rig design: creating the STEREO-RIG LAYOUT - PART 1, Exp. Tech. 36 (5) (2012) 3-4, https://doi.org/10.1111/j.1747-1567.2012.00871.x. | 미소장 |
28 | P. Reu, All about speckles: speckle density, Exp. Tech. 39 (3) (2015) 1-2, https://doi.org/10.1111/ext.12161. | 미소장 |
29 | P. Reu, Speckles and their relationship to the digital camera, Exp. Tech. 38 (4)(2014) 1-2, https://doi.org/10.1111/ext.12105. | 미소장 |
30 | R. Hu nady, M. Hagara, M. Kalina, The aspects of strain fields’ measurement performed on small surfaces using digital image correlation method, EAN 2014 - 52nd Int. Conf. Exp. Stress Anal. 1 (June, 2014) 334-342. | 미소장 |
31 | Y. Wang, S. C. Garcea, and P. J. Withers, “7.6 Computed Tomography of Composites,” doi: 10.1016/B978-0-12-803581-8.10250-4. | 미소장 |
32 | L.S. Athanasiou, D.I. Fotiadis, L.K. Michalis, Propagation of segmentation and imaging system errors, in: Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging, Elsevier, 2017, pp. 151-166. | 미소장 |
33 | R.K. Blandford, D.K. Morton, S.D. Snow, T.E. Rahl, Tensile Stress-Strain Results for 304L and 316L Stainless Steel Plate at Temperature 2007 ASME Pressure Vessels and Piping Division Conference TENSILE STRESS-STRAIN RESULTS for 304L and 316L STAINLESS STEEL 1 PLATE at TEMPERATURE, 2007. | 미소장 |
34 | R. Bigger, et al., A Good Practices Guide for Digital Image Correlation, Oct. 2018, https://doi.org/10.32720/idics/gpg.ed1. | 미소장 |
35 | P. Reu, Hidden components of DIC: calibration and shape, Function-Part 1(2012). | 미소장 |
36 | British Standards Institution, BSI Standards Publication Testing Hardened Concrete, vol. 18, 2019. | 미소장 |
37 | L. Xue, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading, Int. J. Solid Struct. 44 (16) (Aug. 2007)5163-5181, https://doi.org/10.1016/j.ijsolstr.2006.12.026. | 미소장 |
38 | Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (1) (Jan. 2004) 81-98, https://doi.org/10.1016/j.ijmecsci.2004.02.006. | 미소장 |
39 | S. Baltic, J. Magnien, H.P. G€anser, T. Antretter, R. Hammer, Coupled damage variable based on fracture locus: modelling and calibration, Int. J. Plast. 126(Mar. 2020) 102623, https://doi.org/10.1016/j.ijplas.2019.11.002. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.