본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents 1

(An) overview on methanotrophs and the role of Methylosinus trichosporium OB3b for biotechnological applications / Rajendra Singh ; Jaewon Ryu ; Si Wouk Kim 1

Abstract 1

1. Introduction 1

2. Methanotrophs 2

3. Biotechnological Potential of Methylosinus trichosporium OB3b 4

3.1. Biopolymers 4

3.2. Methanol 6

3.3. Bioremediation 6

3.4. Methanobactin 9

4. Commercial Application of Methanotrophs 9

5. Conclusion 10

References 10

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Current updates on COVID-19 vaccines and therapeutics : as of June 2022 Wooseong Lee, Seong-Jun Kim p. 461-467

보기
(An) overview on methanotrophs and the role of Methylosinus trichosporium OB3b for biotechnological applications Rajendra Singh, Jaewon Ryu, Si Wouk Kim p. 468-481

보기
Natural/synthetic polymer materials for bioink development Seo Hyung Moon, Ha Neui Choi, Yun Jung Yang p. 482-493

보기
(A) critical aspect of bioreactor designing and its application for the generation of tissue engineered construct : emphasis on clinical translation of bioreactor Aditya Anand, Sarada Prasanna Mallick, Bhisham Narayan Singh, Shikha Kumari, Dheerendra Kumar Suman, Satyavrat Tripathi, Divakar Singh, Pradeep Srivastava p. 494-514

보기
(A) review of microbial molecular profiling during biomass valorization Adewale Adeniyi, Ibrahim Bello, Taofeek Mukaila, Ademola Hammed p. 515-532

보기
Mechanistic insight into phenolic compounds toxicity and state-of-the-art strategies for enhancing the tolerance of Escherichia coli to phenolic compounds Lina Liu, Xiaolong Ma, Muhammad Bilal, Linlin Wei, Shijie Tang, Hongzhen Luo, Yuping Zhao, Xuguo Duan p. 533-542

보기
Nanoemulsion as an effective inhibitor of biofilm-forming bacterial associated drug resistance : an insight into COVID based nosocomial infections Deena Santhana Raj, Duraisami Dhamodharan, S. Thanigaivel, A.S. Vickram, Hun-Soo Byun p. 543-555

보기
Circ-MAN1A2 contributes to the acquired resistance of gefitinib by binding to miR-409-3p to induce TWIST1 expression in non-small-cell lung cancer Yun Li, Jinping Liu, Rong Luo, Yong You, Guiming Chen p. 556-571

보기
Auto-induction screening protocol for ranking clonal libraries of Pichia pastoris Mut[S] strains David Wollborn, Rebecca Luise Müller, Lara Pauline Munkler, Rebekka Horstmann, Andrea Germer, Lars Mathias Blank, Jochen Büchs p. 572-585

보기
Antioxidant and anticancer effects of epsilon-poly-L-lysine produced by two novel strains of Paenibacillus polymyxa HS6 and Stenotrophomonas maltophilia YS8 Hamidreza Hagh Ranjbar, Afrouzossadat Hosseini Abari, Seyed Mahdi Ghasemi, Najmeh Ghorbani p. 586-595

보기
Effect of sulfamerazine on structural characteristics of sodium alginate biopolymeric films Yerramathi Babu Bhagath, So Yeon Lee, Manjula Kola, Tata Sanjay Kanna Sharma, Annem Muniraj Beulah, Y. Veera Manohara Reddy, Tae Jung Park, Jong Pil Park, Ravi Sahukari, G. Madhavi p. 596-606

보기
Affinity peptide-based electrochemical biosensor for the highly sensitive detection of bovine rotavirus Chae Hwan Cho, Tae Jung Park, Jong Pil Park p. 607-614

보기
Ribosome-binding sequences (RBS) engineering of key genes in Escherichia coli for high production of fatty alcohols Ruonan Chen, Yilan Liu, Wei Zhong, Xuemi Hao, Tingzhen Mu, Maohua Yang, Jianmin Xing p. 615-623

보기
Xylose fermentation was improved by Kluyveromyces marxianus KHM89 through up-regulation of nicotinamide adenine dinucleotide (NAD+) salvage pathway Deok-Ho Kwon, Suk-Jin Ha p. 624-630

보기
Improving the thermostability of α-glucosidase from Xanthomonas campestris through proline substitutions guided by semi-rational design Luyi Chen, Kunyao Jiang, Yaoyao Zhou, Linjiang Zhu, Xiaolong Chen p. 631-639

보기
Biocatalytic production and purification of the high-value biochemical paraxanthine Meredith B. Mock, Shelby Brooks Mills, Ashley Cyrus, Hailey Campo, Tyler Dreischarf, Sydney Strock, Ryan M. Summers p. 640-651

보기
Study on a low-temperature cellulose-degrading strain : fermentation optimization, straw degradation, and the effect of fermentation broth on seed growth Xueli Dong, Jing Ji, Songhao Zhang, Danliu Peng, Yurong Wang, Lishuang Zhang, Jiali Li, Gang Wang p. 652-667

보기
Elucidation of the mechanism and kinetics of ultrasonic extraction of paclitaxel from plant cell cultures of Taxus chinensis Hak-Gyun Kim, Jin-Hyun Kim p. 668-677

보기
Physicochemical characteristics and biogas production potentials of olive flounder and starry flounder wastes Chayanee Chairattanawat, Arma Yulisa, Sang Hyeok Park, Md Abu Hanifa Jannat, Seokhwan Hwang p. 678-686

보기
Acute toxicity evaluation of the disinfectant containing percarbonate and tetraacetylethylenediamine by measuring behavioral responses of small fish using image analysis Seung-Yoon Seo, Yeon-Ho Park, Sang-Kyu Jung, Jinku Kim p. 687-696

보기

참고문헌 (128건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Liu, Y., H. Tang, A. Muhammad, and G. Huang (2019) Emission mechanism and reduction countermeasures of agricultural greenhouse gases – a review. Greenh. Gases Sci. Technol. 9:160-174. 미소장
2 Ritchie, H., M. Roser, and P. Rosado (2020) CO2 and Greenhouse Gas Emissions. Our World in Data, UK. 미소장
3 Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97: 3231-3261. 미소장
4 Singh, R., J. Ryu, and S. W. Kim (2019) Microbial consortia including methanotrophs: some benefits of living together. J. Microbiol. 57: 939-952. 미소장
5 Strong, P. J., S. Xie, and W. P. Clarke (2015) Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49: 4001-4018. 미소장
6 Singh, R., M. Kumar, A. Mittal, and P. K. Mehta (2016)Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6: 174. 미소장
7 Pieja, A. J., M. C. Morse, and A. J. Cal (2017) Methane to bioproducts: the future of the bioeconomy? Curr. Opin. Chem. Biol. 41: 123-131. 미소장
8 Bhatia, S. K., R. K. Bhatia, Y. K. Choi, E. Kan, Y. G. Kim, and Y. H. Yang (2018) Biotechnological potential of microbial consortia and future perspectives. Crit. Rev. Biotechnol. 38:1209-1229. 미소장
9 Cantera, S., R. Muñoz, R. Lebrero, J. C. López, Y. Rodríguez, and P. A. García-Encina (2018) Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 50: 128-135. 미소장
10 Singh, R., M. Kumar, A. Mittal, and P. K. Mehta (2017)Microbial metabolites in nutrition, healthcare and agriculture. 3Biotech. 7: 15. 미소장
11 Jo, S. Y., M. N. Rhie, S. M. Jung, Y. J. Sohn, Y. J. Yeon, M.-S. Kim, C. Park, J. Lee, S. J. Park, and J.-G. Na (2020) Hydrogen production from methane by Methylomonas sp. DH-1 under micro-aerobic conditions. Biotechnol. Bioprocess Eng. 25: 71-77. 미소장
12 Karthikeyan, O. P., K. Chidambarampadmavathy, S. Cires, and K. Heimann (2015) Review of sustainable methane mitigation and biopolymer production. Crit. Rev. Environ. Sci. Technol. 45: 1579-1610. 미소장
13 Kaserer, H. (1905) Uber die Oxydation des Wasserstoffes und des Methans durch Mikroorganismen. Hartleben, Berlin, Germany. 미소장
14 Sohngen, N. (1906) Uber bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl. Bakteriol. Parasitenkd. Infektionskr. 15: 513-517. 미소장
15 Whittenbury, R., K. C. Phillips, and J. F. Wilkinson (1970)Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. 미소장
16 Hanson, R. S. and T. E. Hanson (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. 미소장
17 Ge, X., L. Yang, J. P. Sheets, Z. Yu, and Y. Li (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol. Adv. 32: 1460-1475. 미소장
18 Bowman, J. P., L. I. Sly, P. D. Nichols, and A. C. Hayward (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Evol. Microbiol. 43: 735-753. 미소장
19 Semrau, J. D., A. A. DiSpirito, and S. Yoon (2010) Methanotrophs and copper. FEMS Microbiol. Rev. 34: 496-531. 미소장
20 Bennett, R. K., L. M. Steinberg, W. Chen, and E. T. Papoutsakis (2018) Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50: 81-93. 미소장
21 Mardina, P., J. Li, S. K. S. Patel, I. W. Kim, J. K. Lee, and C. Selvaraj (2016) Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 26: 1234-1241. 미소장
22 Jiang, H., Y. Chen, P. Jiang, C. Zhang, T. J. Smith, J. C. Murrell, and X.-H. Xing (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. 미소장
23 Jiang, H. and X. H. Xing (2018) Mixed methanotrophic consortium for applications in environmental bioengineering and biocatalysis. pp. 237-251. In: M. Kalyuzhnaya and X.-H. Xing (eds.). Methane Biocatalysis: Paving the Way to Sustainability. Springer, Cham, Switzerland. 미소장
24 Wang, S., Q. Liu, J. Li., and Z. Wang (2021) Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. Water Res. 198:117122. 미소장
25 Torres Pazmino, D. E., M. Winkler, A. Glieder, and M. W. Fraaije (2010) Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J. Biotechnol. 146: 9-24. 미소장
26 Basch, H., K. Mogi, D. G. Musaev, and K. Morokuma (1999)Mechanism of the methane → methanol conversion reaction catalyzed by methane monooxygenase:a density functional study. J. Am. Chem. Soc. 121: 7249-7256. 미소장
27 Patel, S. K. S., R. K. Singh, A. Kumar, J. H. Jeong, S. H. Jeong, V. C. Kalia, I. W. Kim, and J. K. Lee (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour. Technol. 241: 922-927. 미소장
28 Bjorck, C. E., P. D. Dobson, and J. Pandhal (2018)Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng. 5: 1-38. 미소장
29 Kim, H. J., J. Huh, Y. W. Kwon, D. Park, Y. Yu, Y. E. Jang, B.-R. Lee, E. Jo, E. J. Lee, Y. Heo, W. Lee, and J. Lee (2019)Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Catal. 2: 342-353. 미소장
30 Semrau, J. D. (2011) Bioremediation via methanotrophy:overview of recent findings and suggestions for future research. Front. Microbiol. 2: 209. 미소장
31 Dedysh, S. N. and P. F. Dunfield (2014) Cultivation of methanotrophs. pp. 231-247. In: T. McGenity, K. Timmis, and B. Nogales (eds.). Hydrocarbon and Lipid Microbiology Protocols. Springer, Berlin, Germany. 미소장
32 Larsen, Ø. and O. A. Karlsen (2016) Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. Microbiologyopen. 5: 254-267. 미소장
33 Kalyuzhnaya, M. G., O. A. Gomez, and J. C. Murrell (2019)The methane-oxidizing bacteria (methanotrophs). pp. 245-278. In: T. McGenity (eds.). Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Springer, Cham, Switzerland. 미소장
34 Lee, S. W., D. R. Keeney, D. H. Lim, A. A. Dispirito, and J. D. Semrau (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl. Environ. Microbiol. 72: 7503-7509. 미소장
35 Gu, W., M. Farhan Ul Haque, B. S. Baral, E. A. Turpin, N. L. Bandow, E. Kremmer, A. Flatley, H. Zischka, A. A. DiSpirito, and J. D. Semrau (2016) A TonB-dependent transporter is responsible for methanobactin uptake by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 82: 1917-1923. 미소장
36 Sullivan, J. P., D. Dickinson, and H. A. Chase (1998)Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit. Rev. Microbiol. 24: 335-373. 미소장
37 Banerjee, R., J. C. Jones, and J. D. Lipscomb (2019) Soluble methane monooxygenase. Annu. Rev. Biochem. 88: 409-431. 미소장
38 Kwon, M., A. Ho, and S. Yoon (2019) Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl. Microbiol. Biotechnol. 103: 1-8. 미소장
39 Bowman, J. (2006) The methanotrophs . the families Methylococcaceae and Methylocystaceae. pp. 266-289. In: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes. Vol. 5, Springer, New York, NY, USA. 미소장
40 Kim, J., D. D. Kim, and S. Yoon (2018) Rapid isolation of fastgrowing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl. Microbiol. Biotechnol. 102: 5707-5715. 미소장
41 Park, S., L. Hanna, R. T. Taylor, and M. W. Droege (1991)Batch cultivation of Methylosinus trichosporium OB3b. I:Production of soluble methane monooxygenase. Biotechnol. Bioeng. 38: 423-433. 미소장
42 Park, S., N. N. Shah, R. T. Taylor, and M. W. Droege (1992)Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol. Bioeng. 40: 151-157. 미소장
43 Shah, N. N., S. Park, R. T. Taylor, and M. W. Droege (1992)Cultivation of Methylosinus trichosporium OB3b: III. production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705-712. 미소장
44 Bowman, J. P., L. Jimenez, I. Rosario, T. C. Hazen, and G. S. Sayler (1993) Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Appl. Environ. Microbiol. 59: 2380-2387. 미소장
45 Soni, B. K., J. Conrad, R. L. Kelley, and V. J. Srivastava (1998)Effect of temperature and pressure on growth and methane utilization by several methanotrophic cultures. Appl. Biochem. Biotechnol. 70-72: 729-738. 미소장
46 Han, B., T. Su, H. Wu, Z. Gou, X. H. Xing, H. Jiang, Y. Chen, X. Li, and J. C. Murrell (2009) Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83: 669-677. 미소장
47 Yu, Y., J. A. Ramsay, and B. A. Ramsay (2009) Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol. J. Biotechnol. 139: 78-83. 미소장
48 Tays, C., M. T. Guarnieri, D. Sauvageau, and L. Y. Stein (2018)Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9: 2239. 미소장
49 Zaldívar Carrillo, J. A., L. Y. Stein, and D. Sauvageau (2018)Defining nutrient combinations for optimal growth and polyhydroxybutyrate production by Methylosinus trichosporium OB3b using response surface methodology. Front. Microbiol. 9: 1513. 미소장
50 Stein, L. Y., S. Yoon, J. D. Semrau, A. A. DiSpirito, A. Crombie, J. C. Murrell, S. Vuilleumier, M. G. Kalyuzhnaya, H. J. Op den Camp, F. Bringel, D. Bruce, J. F. Cheng, A. Copeland, L. Goodwin, S. Han, L. Hauser, M. S. Jetten, A. Lajus, M. L. Land, A. Lapidus, S. Lucas, C. Médigue, S. Pitluck, T. Woyke, A. Zeytun, and M. G. Klotz (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J. Bacteriol. 192: 6497-6498. 미소장
51 Ro, S. Y. and A. C. Rosenzweig (2018) Recent advances in the genetic manipulation of Methylosinus trichosporium OB3b. Methods Enzymol. 605: 335-349. 미소장
52 Dassama, L. M., G. E. Kenney, and A. C. Rosenzweig (2017)Methanobactins: from genome to function. Metallomics. 9: 7-20. 미소장
53 Farhan Ul Haque, M., B. Kalidass, N. Bandow, E. A. Turpin, A. A. DiSpirito, and J. D. Semrau (2015) Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 81: 7546-7552. 미소장
54 Khosravi-Darani, K., Z. B. Mokhtari, T. Amai, and K. Tanaka (2013) Microbial production of poly(hydroxybutyrate) from C1carbon sources. Appl. Microbiol. Biotechnol. 97: 1407-1424. (Erratum published 2013, Appl. Microbiol. Biotechnol. 97: 5657) 미소장
55 Younes, S., D. Awad, E. Kassab, M. Haack, C. Schuler, N. Mehlmer, and T. Brueck (2021) Systems biology engineering of the pantothenate pathway to enhance 3HB productivity in Escherichia coli. Biotechnol. Bioprocess Eng. 26: 621-629. 미소장
56 Chu, K. H. and L. Alvarez-Cohen (1998) Effect of nitrogen source on growth and trichloroethylene degradation by methaneoxidizing bacteria. Appl. Environ. Microbiol. 64: 3451-3457. 미소장
57 Zúñiga, C., M. Morales, S. Le Borgne, and S. Revah (2011)Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J. Hazard. Mater. 190: 876-882. 미소장
58 Levett, I., G. Birkett, N. Davies, A. Bell, A. Langford, B. Laycock, P. Lant, and S. Pratt (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J. Environ. Chem. Eng. 4: 3724-3733. 미소장
59 Scott, D., J. Brannan, and I. J. Higgins (1981) The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b. Microbiology (Reading). 125: 63-72. 미소장
60 Shah, N. N., M. L. Hanna, and R. T. Taylor (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methanedependent growth conditions. Biotechnol. Bioeng. 49: 161-171. 미소장
61 Zhang, T., J. Zhou, X. Wang, and Y. Zhang (2019) Poly-β-hydroxybutyrate production by Methylosinus trichosporium OB3b at different gas-phase conditions. Iran. J. Biotechnol. 17: e1866. 미소장
62 Zhang, T., J. Zhou, X. Wang, and Y. Zhang (2017) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J. Environ. Sci. (China). 52:49-57. 미소장
63 Rostkowski, K. H., A. R. Pfluger, and C. S. Criddle (2013)Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour. Technol. 132: 71-77. 미소장
64 Zhang, Y., J. Xin, L. Chen, and C. Xia (2009) The methane monooxygenase intrinsic activity of kinds of methanotrophs. Appl. Biochem. Biotechnol. 157: 431-441. 미소장
65 Doronina, N. V., V. A. Ezhov, and I. Trotsenko (2008) Growth of Methylosinus trichosporium OB3b on methane and polybeta-hydroxybutyrate biosynthesis. Prikl. Biokhim. Mikrobiol. 44: 202-206. 미소장
66 Nguyen, T. T. and E. Y. Lee (2021) Methane-based biosynthesis of 4-hydroxybutyrate and P(3-hydroxybutyrate-co-4-hydroxybutyrate)using engineered Methylosinus trichosporium OB3b. Bioresour. Technol. 335: 125263. 미소장
67 Nguyen, D. T. N., O. K. Lee, C. Lim, J. Lee, J.-G. Na, and E. Y. Lee (2020) Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab. Eng. 59: 142-150. 미소장
68 Nguyen, T. T., O. K. Lee, S. Naizabekov, and E. Y. Lee (2020)Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium OB3b. Green Chem. 22: 7803-7811. 미소장
69 Mai, D. H. A., T. T. Nguyen, and E. Y. Lee (2021) The ethylmalonyl-CoA pathway for methane-based biorefineries: a case study of using Methylosinus trichosporium OB3b, an alpha-proteobacterial methanotroph, for producing 2-hydroxyisobutyric acid and 1,3-butanediol from methane. Green Chem. 23: 7712-7723. 미소장
70 AlSayed, A., A. Fergala, and A. Eldyasti (2018) Influence of biomass density and food to microorganisms ratio on the mixed culture type I methanotrophs enriched from activated sludge. J. Environ. Sci. (China). 70: 87-96. 미소장
71 Duan, C., M. Luo, and X. Xing (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353. 미소장
72 Kim, H. G., G. H. Han, and S. W. Kim (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15: 476-480. 미소장
73 Sugimori, D., M. Takeguchi, and I. Okura (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol. Lett. 17: 783-784. 미소장
74 Han, J. S., C. M. Ahn, B. Mahanty, and C. G. Kim (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Biochem. Biotechnol. 171: 1487-1499. 미소장
75 Hwang, I. Y., D. H. Hur, J. H. Lee, C. H. Park, I. S. Chang, J. W. Lee, and E. Y. Lee (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25: 375-380. 미소장
76 Nguyen, T. T., I. Y. Hwang, J. G. Na, and E. Y. Lee (2019) Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J. Ind. Microbiol. Biotechnol. 46: 675-685. 미소장
77 Oh, S. H., I. Y. Hwang, O. K. Lee, W. Won, and E. Y. Lee (2019) Development and optimization of the biological conversion of ethane to ethanol using whole-cell methanotrophs possessing methane monooxygenase. Molecules. 24: 591. 미소장
78 Miyaji, A., T. Miyoshi, K. Motokura, and T. Baba (2011) The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol. Biotechnol. Lett. 33: 2241-2246. 미소장
79 Taylor, A., P. Molzahn, T. Bushnell, C. Cheney, M. LaJeunesse, M. Azizian, and L. Semprini (2018) Immobilization of Methylosinus trichosporium OB3b for methanol production. J. Ind. Microbiol. Biotechnol. 45: 201-211. 미소장
80 Mehta, P. K., T. K. Ghose, and S. Mishra (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol. Bioeng. 37: 551-556. 미소장
81 Mehta, P. K., S. Mishra, and T. K. Ghose (1987) Methanol accumulation by resting cells of Methylosinus trichosporium (I). J. Gen. Appl. Microbiol. 33: 221-229. 미소장
82 Pen, N., L. Soussan, M.-P. Belleville, J. Sanchez, and D. Paolucci-Jeanjean (2016) Methane hydroxylation by Methylosinus trichosporium OB3b: monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnol. Bioprocess Eng. 21: 283-293. 미소장
83 Pen, N., L. Soussan, M. P. Belleville, J. Sanchez, C. Charmette, and D. Paolucci-Jeanjean (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour. Technol. 174: 42-52. 미소장
84 Markowska, A. and B. Michalkiewicz (2009) Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63: 105-110. 미소장
85 Lee, S. G., J. H. Goo, H. G. Kim, J. I. Oh, Y. M. Kim, and S. W. Kim (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950. 미소장
86 Furuto, T., M. Takeguchi, and I. Okura (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A Chem. 144: 257-261. 미소장
87 Takeguchi, M., T. Furuto, D. Sugimori, and I. Okura (1997)Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152. 미소장
88 Park, S. H. and S. Y. Choo (1993) Production of methanol by resting cells of Methylosinus trichosporium OB3b. Korean J. Biotechnol. Bioeng. 8: 341-350. 미소장
89 Hanson, R. S., H. C. Tsien, K. Tsuji, G. A. Brusseau, and L. P. Wackett (1990) Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria. FEMS Microbiol. Rev. 7: 273-278. 미소장
90 Tobiszewski, M. and J. Namieśnik (2011) Determination of chlorinated solvents in industrial water and wastewater by DAIGC-ECD. Anal. Bioanal. Chem. 399: 3565-3572. 미소장
91 Park, S.-Y. and C.-G. Kim (2019) Application and development of methanotrophs in environmental engineering. J. Mater. Cycles Waste Manag. 21: 415-422. 미소장
92 Lontoh, S. and J. D. Semrau (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 64: 1106-1114. 미소장
93 Eswayah, A. S., T. J. Smith, A. C. Scheinost, N. Hondow, and P. H. E. Gardiner (2017) Microbial transformations of selenite by methane-oxidizing bacteria. Appl. Microbiol. Biotechnol. 101:6713-6724. 미소장
94 Eswayah, A. S., N. Hondow, A. C. Scheinost, M. Merroun, M. Romero-González, T. J. Smith, and P. H. E. Gardiner (2019)Methyl selenol as a precursor in selenite reduction to Se/S species by methane-oxidizing bacteria. Appl. Environ. Microbiol. 85: e01379-19. 미소장
95 Lu, X., W. Gu, L. Zhao, M. Farhan Ul Haque, A. A. DiSpirito, J. D. Semrau, and B. Gu (2017) Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 3: e1700041. 미소장
96 Yoshinari, T. and D. Shafer (1990) Degradation of dimethyl nitrosamine by Methylosinus trichosporium OB3b. Can. J. Microbiol. 36: 834-838. 미소장
97 Sharp, J. O., T. K. Wood, and L. Alvarez-Cohen (2005) Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol. Bioeng. 89: 608-618. 미소장
98 Lindner, A. S., C. Whitfield, N. Chen, J. D. Semrau, and P. Adriaens (2003) Quantitative structure-biodegradation relationships for ortho-substituted biphenyl compounds oxidized by Methylosinus trichosporium OB3b. Environ. Toxicol. Chem. 22: 2251-2257. 미소장
99 Hesselsoe, M., S. Boysen, N. Iversen, L. Jørgensen, J. C. Murrell, I. McDonald, S. Radajewski, H. Thestrup, and P. Roslev (2005) Degradation of organic pollutants by methane grown microbial consortia. Biodegradation. 16: 435-448. 미소장
100 Yoon, S. (2010) Towards Practical Application of Methanotrophic Metabolism in Chlorinated Hydrocarbon Degradation, Greenhouse Gas Removal, and Immobilization of Heavy Metals. Ph.D. Thesis. University of Michigan, Ann Arbor, MI, USA. 미소장
101 Hwang, J. W., Y. B. Choi, S. Park, C. Y. Choi, and E. Y. Lee (2007) Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation. 18: 91-101. 미소장
102 Pressman, J. G., G. Georgiou, and G. E. Speitel Jr. (2005) Scaleup considerations for a hollow-fiber-membrane bioreactor treating trichloroethylene-contaminated water. Water Environ. Res. 77: 533-542. 미소장
103 Kim, H. J. and D. W. Graham (2003) Effects of oxygen and nitrogen conditions on the transformation kinetics of 1,2-dichloroethenes by Methylosinus trichosporium OB3b and its sMMOC mutant. Biodegradation. 14: 407-414. 미소장
104 Pressman, J. G., G. Georgiou, and G. E. Speitel Jr. (2000) A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase. Biotechnol. Bioeng. 68: 548-556. 미소장
105 Aziz, C. E., G. Georgiou, and G. E. Speitel Jr. (1999)Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PP358. Biotechnol. Bioeng. 65: 100-107. 미소장
106 Sipkema, E. M., W. de Koning, J. E. Van Hylckama Vlieg, K. J. Ganzeveld, D. B. Janssen, and A. A. Beenackers (1999)Trichloroethene degradation in a two-step system by Methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane. Biotechnol. Bioeng. 63: 56-68. 미소장
107 Chang, H. L. and L. Alvarez-Cohen (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl. Environ. Microbiol. 62:3371-3377. 미소장
108 Jahng, D., C. S. Kim, R. S. Hanson, and T. K. Wood (1996)Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnol. Bioeng. 51: 349-359. 미소장
109 Fitch, M. W., G. E. Speitel, and G. Georgiou (1996) Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol. 62:1124-1128. 미소장
110 Sun, A. K. and T. K. Wood (1996) Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45: 248-256. 미소장
111 Dobbins, D. C., J. Peltola, J. M. Kustritz, T. J. Chresand, and J. C. Preston (1995) Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater. J. Air Waste Manag. Assoc. 45: 12-19. 미소장
112 Jahng, D. and T. K. Wood (1994) Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60: 2473-2482. 미소장
113 Koh, S. C., J. P. Bowman, and G. S. Sayler (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59: 960-967. 미소장
114 Phelps, P. A., S. K. Agarwal, G. E. Speitel, and G. Georgiou (1992) Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58: 3701-3708. 미소장
115 Oldenhuis, R., J. Y. Oedzes, J. J. van der Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14. 미소장
116 Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b:mechanistic and environmental implications. Biochemistry. 29: 6419-6427. 미소장
117 Oldenhuis, R., R. L. Vink, D. B. Janssen, and B. Witholt (1989)Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55: 2819-2826. 미소장
118 Tsien, H. C., G. A. Brusseau, R. S. Hanson, and L. P. Waclett (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155-3161. 미소장
119 Kenney, G. E., M. Sadek, and A. C. Rosenzweig (2016) Copperresponsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics. 8: 931-940. 미소장
120 Chang, J., W. Gu, D. Park, J. D. Semrau, A. A. DiSpirito, and S. Yoon (2018) Methanobactin from Methylosinus trichosporium OB3b inhibits N2O reduction in denitrifiers. ISME J. 12: 2086-2089. 미소장
121 DiSpirito, A. A., J. D. Semrau, J. C. Murrell, W. H. Gallagher, C. Dennison, and S. Vuilleumier (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol. Mol. Biol. Rev. 80: 387-409. 미소장
122 McCabe, J. W., R. Vangala, and L. A. Angel (2017) Binding selectivity of methanobactin from Methylosinus trichosporium OB3b for copper(I), silver(I), zinc(II), nickel(II), cobalt(II), manganese(II), lead(II), and iron(II). J. Am. Soc. Mass Spectrom. 28: 2588-2601. 미소장
123 Lichtmannegger, J., C. Leitzinger, R. Wimmer, S. Schmitt, S. Schulz, Y. Kabiri, C. Eberhagen, T. Rieder, D. Janik, F. Neff, B. K. Straub, P. Schirmacher, A. A. DiSpirito, N. Bandow, B. S. Baral, A. Flatley, E. Kremmer, G. Denk, F. P. Reiter, S. Hohenester, F. Eckardt-Schupp, N. A. Dencher, J. Adamski, V. Sauer, C. Niemietz, H. H. J. Schmidt, U. Merle, D. N. Gotthardt, G. Kroemer, K. H. Weiss, and H. Zischka (2016) Methanobactin reverses acute liver failure in a rat model of Wilson disease. J. Clin. Invest. 126: 2721-2735. 미소장
124 Baral, B. S., N. L. Bandow, A. Vorobev, B. C. Freemeier, B. H. Bergman, T. J. Herdendorf, N. Fuentes, L. Ellias, E. Turpin, J. D. Semrau, and A. A. DiSpirito (2014) Mercury binding by methanobactin from Methylocystis strain SB2. J. Inorg. Biochem. 141: 161-169. 미소장
125 Choi, D. W., J. D. Semrau, W. E. Antholine, S. C. Hartsel, R. C. Anderson, J. N. Carey, A. M. Dreis, E. M. Kenseth, J. M. Renstrom, L. L. Scardino, G. S. Van Gorden, A. A. Volkert, A. D. Wingad, P. J. Yanzer, M. T. McEllistrem, A. M. de la Mora, and A. A. DiSpirito (2008) Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs. J. Inorg. Biochem. 102: 1571-1580. 미소장
126 Balasubramanian, R., B. T. Levinson, and A. C. Rosenzweig (2010) Secretion of flavins by three species of methanotrophic bacteria. Appl. Environ. Microbiol. 76: 7356-7358. 미소장
127 Lidstrom, M. E., M. G. Kalyuzhnaya, D. W. Griffin, N. Bourdakos, P. T. Pienkos, and L. M. L. Laurens (2015)Microbial conversion of methane. US Patent 20150111265A1. 미소장
128 Subbian, E. (2017) Recombinant methanotrophic bacterium and a method of production of succinic acid from methane or biogas thereof. US Patent 10,570,424B2. 미소장