권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
기사명 | 저자명 | 페이지 | 원문 | 목차 |
---|---|---|---|---|
(The) role of diuretic hormones (DHs) and their receptors in Drosophila | Gahbien Lee, Heejin Jang, Yangkyun Oh | p. 209-215 |
|
|
Expanding roles of centrosome abnormalities in cancers | Soohyun Song, Surim Jung, Mijung Kwon | p. 216-224 |
|
|
Deciphering the underlying mechanism of liver diseases through utilization of multicellular hepatic spheroid models | Sanghwa Kim, Su-Yeon Lee, Haeng Ran Seo | p. 225-233 |
|
|
Tat-thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling | Hyun Ju Cha, Won Sik Eum, Gi Soo Youn, Jung Hwan Park, Hyeon Ji Yeo, Eun Ji Yeo, Hyun Jung Kwon, Lee Re Lee, Na Yeon Kim, Su Yeon Kwon … [et al.] | p. 234-239 |
|
|
Secreted decoy of insulin receptor is required for blood-brain and blood-retina barrier integrity in Drosophila | Jihyun Kim, Nuri Choi, Jeongsil Kim-Ha | p. 240-245 |
|
|
Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases | Min-Seon Hwang, Jung-Hwan Baek, Jun-Kyu Song, In Hye Lee, Kyung-Hee Chun | p. 246-251 |
|
|
Determination of HIF-1α degradation pathways via modulation of the propionyl mark | Kwanyoung Jeong, Jinmi Choi, Ahrum Choi, Joohee Shim, Young Ah Kim, Changseok Oh, Hong-Duk Youn, Eun-Jung Cho | p. 252-257 |
|
|
New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study | Eun-Young Lee, Young-Ho Kim, Md Abu Rayhan, Hyun Guy Kang, June Hyuk Kim, Jong Woong Park, Seog-Yun Park, So Hee Lee, Hye Jin You | p. 258-264 |
|
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Conduit PT, Wainman A and Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16, 611-624 | 미소장 |
2 | Gonczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15, 639-652 | 미소장 |
3 | Nigg EA and Holland AJ (2018) Once and only once:mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19, 297-312 | 미소장 |
4 | Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119, 2717-2723 | 미소장 |
5 | Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7, 1122-1144 | 미소장 |
6 | Marteil G, Guerrero A, Vieira AF et al (2018) Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 9, 1258 | 미소장 |
7 | Kramer A, Neben K and Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29, 375-383 | 미소장 |
8 | Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2, 815-825 | 미소장 |
9 | Galeotti G (1893) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol Anat Allg Pathol 14, 249–271 | 미소장 |
10 | Hardy P (2005) Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int 29, 983–992 | 미소장 |
11 | Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121, 1–84 | 미소장 |
12 | Godinho SA and Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369, 20130467 | 미소장 |
13 | Pihan GA, Wallace J, Zhou YN and Doxsey SJ (2003)Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63, 1398-1404 | 미소장 |
14 | Schnerch D and Nigg EA (2016) Structural centrosome aberrations favor proliferation by abrogating microtubuledependent tissue integrity of breast epithelial mammospheres. Oncogene 35, 2711-2722 | 미소장 |
15 | Ogden A, Rida PC and Aneja R (2017) Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 7, 262 | 미소장 |
16 | de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M and Barbosa-Morais NL (2019) Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 15, e1006832 | 미소장 |
17 | Morretton JP, Simon A, Herbette A et al (2022) A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med 14, e15670 | 미소장 |
18 | Shin B, Kim MS, Lee Y, Jung GI and Rhee K (2021)Generation and fates of supernumerary centrioles in dividing cells. Mol Cells 44, 699-705 | 미소장 |
19 | Habedanck R, Stierhof YD, Wilkinson CJ and Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7, 1140-1146 | 미소장 |
20 | Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD and Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13, 190-202 | 미소장 |
21 | Liao Z, Zhang H, Fan P et al (2019) High PLK4 expression promotes tumor progression and induces epithelial-mesenchymal transition by regulating the Wnt/beta-catenin signaling pathway in colorectal cancer. Int J Oncol 54, 479-490 | 미소장 |
22 | Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15, 2199-2207 | 미소장 |
23 | Basto R, Brunk K, Vinadogrova T et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 | 미소장 |
24 | Cunha-Ferreira I, Rodrigues-Martins A, Bento I et al (2009)The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19, 43-49 | 미소장 |
25 | Holland AJ, Lan W, Niessen S, Hoover H and Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188, 191-198 | 미소장 |
26 | Rogers GC, Rusan NM, Roberts DM, Peifer M and Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184, 225-239 | 미소장 |
27 | Sillibourne JE, Tack F, Vloemans N et al (2010) Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 21, 547-561 | 미소장 |
28 | Guderian G, Westendorf J, Uldschmid A and Nigg EA (2010) Plk4 trans-autophosphorylation regulates centriole number by controlling beta TrCP-mediated degradation. J Cell Sci 123, 2163-2169 | 미소장 |
29 | Loncarek J, Hergert P and Khodjakov A (2010) Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr Biol 20, 1277-1282 | 미소장 |
30 | Shukla A, Kong D, Sharma M, Magidson V and Loncarek J (2015) Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun 6, 8077 | 미소장 |
31 | Inanc B, Dodson H and Morrison CG (2010) A centrosomeautonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 21, 3866-3877 | 미소장 |
32 | Douthwright S and Sluder G (2014) Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 229, 1427-1436 | 미소장 |
33 | Sabino D, Gogendeau D, Gambarotto D et al (2015)Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 25, 879-889 | 미소장 |
34 | Castellanos E, Dominguez P and Gonzalez C (2008)Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18, 1209-1214 | 미소장 |
35 | Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P and Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15, 731-740 | 미소장 |
36 | Vitre B, Holland AJ, Kulukian A et al (2015) Chronic centrosome amplification without tumorigenesis. Proc Natl Acad Sci U S A 112, 6321-6330 | 미소장 |
37 | Kulukian A, Holland AJ, Vitre B, Naik S, Cleveland DW and Fuchs E (2015) Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc Natl Acad Sci U S A 112, 6311-6320 | 미소장 |
38 | Sercin O, Larsimont JC, Karambelas AE et al (2016) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18, 100-110 | 미소장 |
39 | Coelho PA, Bury L, Shahbazi MN et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5, 510209 | 미소장 |
40 | Levine MS, Bakker B, Boeckx B et al (2017) Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 40, 313-322 | 미소장 |
41 | Godinho SA, Kwon M and Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28, 85-98 | 미소장 |
42 | Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM and Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127-129 | 미소장 |
43 | Kwon M, Godinho SA, Chandhok NS et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22, 2189-2203 | 미소장 |
44 | Leber B, Maier B, Fuchs F et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2, 33ra38 | 미소장 |
45 | Ganem NJ, Godinho SA and Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 | 미소장 |
46 | Silkworth WT, Nardi IK, Scholl LM and Cimini D (2009)Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. Plos One 4, e6564 | 미소장 |
47 | Liu S, Kwon M, Mannino M et al (2018) Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551-555 | 미소장 |
48 | Kwon M, Leibowitz ML and Lee JH (2020) Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 52, 1777-1786 | 미소장 |
49 | Hatch EM, Fischer AH, Deerinck TJ and Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47-60 | 미소장 |
50 | Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53-58 | 미소장 |
51 | Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522, 179-184 | 미소장 |
52 | Janssen A, van der Burg M, Szuhai K, Kops G and Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895-1898 | 미소장 |
53 | Lambert AW, Pattabiraman DR and Weinberg RA (2017)Emerging biological principles of metastasis. Cell 168, 670-691 | 미소장 |
54 | Godinho SA, Picone R, Burute M et al (2014) Oncogenelike induction of cellular invasion from centrosome amplification. Nature 510, 167-171 | 미소장 |
55 | Bid HK, Roberts RD, Manchanda PK and Houghton PJ (2013) RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 12, 1925-1934 | 미소장 |
56 | Mack NA, Whalley HJ, Castillo-Lluva S and Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10, 1571-1581 | 미소장 |
57 | Arnandis T, Monteiro P, Adams SD et al (2018) Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev Cell 47, 409-424 | 미소장 |
58 | Adams SD, Csere J, D’Angelo G et al (2021) Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr Biol 31, 1403-1416 e1407 | 미소장 |
59 | Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H and Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836-848 | 미소장 |
60 | van Niel G, D’Angelo G and Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213-228 | 미소장 |
61 | Ganier O, Schnerch D, Oertle P, Lim RYH, Plodinec M and Nigg EA (2018) Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 37, e98576 | 미소장 |
62 | Ganier O, Schnerch D and Nigg EA (2018) Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion. Open Biol 8, 180044 | 미소장 |
63 | Yu LL, Song YM, Zhang QH and Zhan QM (2009)Ninein-like protein is overexpressed in head and neck squamous cell carcinoma and contributes to cancer growth and resistance to apoptosis. Oncol Rep 22, 789-798 | 미소장 |
64 | Qu D, Qu HY, Fu M et al (2008) Increased expression of Nlp, a potential oncogene in ovarian cancer, and its implication in carcinogenesis. Gynecol Oncol 110, 230-236 | 미소장 |
65 | Shao S, Liu R, Wang Y et al (2010) Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 120, 498-507 | 미소장 |
66 | Slattum GM and Rosenblatt J (2014) Tumour cell invasion:an emerging role for basal epithelial cell extrusion. Nat Rev Cancer 14, 495-501 | 미소장 |
67 | Ohsawa S, Vaughen J and Igaki T (2018) Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev Cell 44, 284-296 | 미소장 |
68 | Gu YP, Shea J, Slattum G et al (2015) Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4, e04069 | 미소장 |
69 | Bazzi H and Anderson KV (2014) Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 111, 1491-1500 | 미소장 |
70 | Lambrus BG, Uetake Y, Clutario KM et al (2015) p53protects against genome instability following centriole duplication failure. J Cell Biol 210, 63-77 | 미소장 |
71 | Wong YL, Anzola JV, Davis RL et al (2015) Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 | 미소장 |
72 | Fong CS, Mazo G, Das T et al (2016) 53BP1 and USP28mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5, e16270 | 미소장 |
73 | Lambrus BG, Daggubati V, Uetake Y et al (2016) A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J Cell Biol 214, 143-153 | 미소장 |
74 | Meitinger F, Anzola JV, Kaulich M et al (2016) 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol 214, 155-166 | 미소장 |
75 | Lambrus BG and Holland AJ (2017) A new mode of mitotic surveillance. Trends Cell Biol 27, 314-321 | 미소장 |
76 | Uetake Y and Sluder G (2010) Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 20, 1666-1671 | 미소장 |
77 | Contadini C, Monteonofrio L, Virdia I et al (2019) p53mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death Dis 10, 850 | 미소장 |
78 | Holland AJ, Fachinetti D, Zhu Q et al (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26, 2684-2689 | 미소장 |
79 | Ganem NJ, Cornils H, Chiu SY et al (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 | 미소장 |
80 | Fava LL, Schuler F, Sladky V et al (2017) The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 31, 34-45 | 미소장 |
81 | Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J and Holland AJ (2021) ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 40, e105106 | 미소장 |
82 | Burigotto M, Mattivi A, Migliorati D et al (2021) Centriolar distal appendages activate the centrosome-PIDDosome-p53signalling axis via ANKRD26. EMBO J 40, e104844 | 미소장 |
83 | Zhang D, Zaugg K, Mak TW and Elledge SJ (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529-542 | 미소장 |
84 | Iwabuchi K, Bartel PL, Li B, Marraccino R and Fields S (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A 91, 6098-6102 | 미소장 |
85 | Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H and Oren M (2006) A positive feedback loop between the p53and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20, 2687-2700 | 미소장 |
86 | Tinel A and Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843-846 | 미소장 |
87 | Oliver TG, Meylan E, Chang GP et al (2011) Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 43, 57-71 | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.