권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Purpose: To develop a deep learning model that can predict the axial lengths of eyes using ultra-widefield (UWF) fundus photography.
Methods: We retrospectively enrolled patients who visited the ophthalmology clinic at the Seoul National University Hospital between September 2018 and December 2021. Patients with axial length measurements and UWF images taken within 3 months of axial length measurement were included in the study. The dataset was divided into a development set and a test set at an 8:2 ratio while maintaining an equal distribution of axial lengths (stratified splitting with binning). We used transfer learning-based on EfficientNet B3 to develop the model. We evaluated the model’s performance using mean absolute error (MAE), R-squared (R2), and 95% confidence intervals (CIs). We used vanilla gradient saliency maps to illustrate the regions predominantly used by convolutional neural network.
Results: In total, 8,657 UWF retinal fundus images from 3,829 patients (mean age, 63.98 ±15.25 years) were included in the study. The deep learning model predicted the axial lengths of the test dataset with MAE and R² values of 0.744 mm (95% CI, 0.709–0.779 mm) and 0.815 (95% CI, 0.785–0.840), respectively. The model’s accuracy was 73.7%, 95.9%, and 99.2% in prediction, with error margins of ±1.0, ±2.0, and ±3.0 mm, respectively.
Conclusions: We developed a deep learning-based model for predicting the axial length from UWF images with good performance.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2007;85:472–85. | 미소장 |
2 | Haarman AE, Enthoven CA, Tideman JW, et al. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci 2020;61:49. | 미소장 |
3 | Hashimoto S, Yasuda M, Fujiwara K, et al. Association between axial length and myopic maculopathy: the Hisayama Study. Ophthalmol Retina 2019;3:867–73. | 미소장 |
4 | Oku Y, Oku H, Park M, et al. Long axial length as risk factor for normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2009;247:781–7. | 미소장 |
5 | Li M, Yang Y, Jiang H, et al. Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol 2017;174:56–67. | 미소장 |
6 | Liu M, Wang P, Hu X, et al. Myopia-related stepwise and quadrant retinal microvascular alteration and its correlation with axial length. Eye (Lond) 2021;35:2196–205. | 미소장 |
7 | Yang Y, Wang J, Jiang H, et al. Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci 2016;57:6020–30. | 미소장 |
8 | Moon JY, Garg I, Cui Y, et al. Wide-field swept-source optical coherence tomography angiography in the assessment of retinal microvasculature and choroidal thickness in patients with myopia. Br J Ophthalmol 2023;107:102–8. | 미소장 |
9 | Dong L, Hu XY, Yan YN, et al. Deep Learning-based estimation of axial length and subfoveal choroidal thickness from color fundus photographs. Front Cell Dev Biol 2021;9:653692. | 미소장 |
10 | Nussenblatt RB, Palestine AG, Chan CC, Roberge F. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology 1985;92:467–71. | 미소장 |
11 | Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. PMLR 2019;97:6105–14. | 미소장 |
12 | Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: isualizing image classification models and saliency maps [Preprint]. Posted 2014 Apr 19. arXiv:1312.6034 https://doi.org/10.48550/arXiv.1312.6034 | 미소장 |
13 | Jeong Y, Lee B, Han JH, Oh J. Ocular axial length prediction based on visual interpretation of retinal fundus images via deep neural network. IEEE J Sel Top Quantum Electron 2020;27:1–7. | 미소장 |
14 | Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol 1985;103:785–9. | 미소장 |
15 | Jagadeesh D, Philip K, Naduvilath TJ, et al. Tessellated fundus appearance and its association with myopic refractive error. Clin Exp Optom 2019;102:378–84. | 미소장 |
16 | Lee K M, Park SW, K im M, et al. Relationship between three-dimensional magnetic resonance imaging eyeball shape and optic nerve head morphology. Ophthalmology 2021;128:532–44. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내18
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.