권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405-1416. https://doi.org/10.1111/gcb.14020. | 미소장 |
2 | Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD (2023) Microplastic diagnostics in humans:“The 3Ps” Progress, problems, and prospects. Science of The Total Environment, 856, 159164. https://doi.org/10.1016/j.scitotenv.2022.159164. | 미소장 |
3 | Nunes BZ, Moreira LB, Xu EG, Castro ÍB (2023) A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Science of The Total Environment, 865, 161293. https://doi.org/10.1016/j.scitotenv.2022.161293. | 미소장 |
4 | Ikenoue T, Nakajima R, Fujiwara A, Onodera J, Itoh M, Toyoshima J, Watanabe E, Murata A, Nishino S, Kikuchi T (2023) Horizontal distribution of surface microplastic concentrations and water-column microplastic inventories in the Chukchi Sea, western Arctic Ocean. Science of The Total Environment, 855, 159564. https://doi.org/10.1016/j.scitotenv.2022.159564. | 미소장 |
5 | Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE (2020) A methodological approach of the current literature on microplastic contamination in terrestrial environments:Current knowledge and baseline considerations. Science of The Total Environment, 730, 139164. https://doi.org/10.1016/j.scitotenv.2020.139164. | 미소장 |
6 | Choi YR, Kim Y-N, Yoon J-H, Dickinson N, Kim K-H (2021) Plastic contamination of forest, urban, and agricultural soils: A case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments, 21, 1962-1973. https://doi.org/10.1007/s11368-020-02759-0. | 미소장 |
7 | Hur J, Jho EH (2021) Current research trends on the effects of microplastics in soil environment using earthworms: Mini-review. Journal of Korean Society of Environmental Engineers, 43(4), 299-306. https://doi.org/10.4491/KSEE.2021.43.4.299. | 미소장 |
8 | Hasan MM, Jho EH (2022) Effect of microplastics on the germination and growth of terrestrial plants. Journal of Korean Society of Environmental Engineers, 44(10), 375-382. https://doi.org/10.4491/KSEE.2022.44.10.375. | 미소장 |
9 | Tian L, Jinjin C, Ji R, Ma Y, Yu X (2022) Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311. | 미소장 |
10 | Rasool S, Rasool T, Gani KM (2022) A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301. | 미소장 |
11 | Wu C, Pan S, Shan Y, Ma Y, Wang D, Song X, Hu H, Ren X, Ma X et al. (2022) Microplastics mulch film affects the environmental behavior of adsorption and degradation of pesticide residues in soil. Environmental Research, 214, 114133. https://doi.org/10.1016/j.envres.2022.114133. | 미소장 |
12 | Liu S, Che Z, Chen G (2016) Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 84, 56-61. https://doi.org/10.1016/j.cropro.2016.02.012. | 미소장 |
13 | Lai Q, Sun X, Li L, Li D, Wang M, Shi H (2021) Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. Chemosphere, 272, 129577. https://doi.org/10.1016/j.chemosphere.2021.129577. | 미소장 |
14 | Verdisson S, Couderchet M, Vernet G (2001) Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere, 44, 467-474. https://doi.org/10.1016/S0045-6535(00)00468-9. | 미소장 |
15 | Rosen MB, Wilson VS, Schmid JE, Gray LE (2005) Gene expression analysis in the ventral prostate of rats exposed to vinclozolin or procymidone. Reproductive Toxicology, 19, 367-379. https://doi.org/10.1016/j.reprotox.2004.10.005. | 미소장 |
16 | Sarker A, Lee S-H, Kwak S-Y, Nandi R, Kim J-E (2020) Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO2 mediators. Ecotoxicology and Environmental Safety, 196, 110561. https://doi.org/10.1016/j.ecoenv.2020.110561. | 미소장 |
17 | Vasileiadis S, Puglisi E, Papadopoulou ES, Pertile G, Suciu N, Pappolla RA, Tourna M, Karas PA, Papadimitriou F, Kasiotakis A et al. (2018) Blame it on the metabolite: 3,5-dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms. Applied and Environmental Microbiology, 84(22), e01536-18. https://doi.org/10.1128/AEM.01536-18. | 미소장 |
18 | Lee YJ, Yang JW, Choi B, Park SJ, Lee CG, Jho EH (2023) Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics. Korean Journal of Chemical Engineering, 40(3), 612-617. https://doi.org/10.1007/s11814-022-1231-z. | 미소장 |
19 | Wang T, Yu C, Chu Q, Wang F, Lan T, Wang J (2020)Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. https://doi.org/10.1016/j.chemosphere.2019.125491. | 미소장 |
20 | Mo Q, Yang X, Wang J, Xu H, Li W, Fan Q, Gao S, Yang W, Gao C, Liao D et al. (2021) Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environmental Pollution, 291, 118120. https://doi.org/10.1016/j.envpol.2021.118120. | 미소장 |
21 | Wang Y, Liu C, Wang F, Sun Q (2022) Behavior and mechanism of atrazine adsorption on pristine and aged microplastics in the aquatic environment: Kinetic and thermodynamic studies. Chemosphere, 292, 133425. https://doi.org/10.1016/j.chemosphere.2021.133425. | 미소장 |
22 | Šunta U, Prosenc F, Trebše P, Bulc TG, Kralj MB (2020) Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere, 261, 127762. https://doi.org/10.1016/j.chemosphere.2020.127762. | 미소장 |
23 | Li H, Wang F, Li J, Deng S, Zhang S (2021) Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere, 264, 128556. https://doi.org/10.1016/j.chemosphere.2020.128556. | 미소장 |
24 | McDougall L, Thomson L, Brand S, Wagstaff A, Lawton LA, Petrie B (2022) Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Science of The Total Environment, 808, 152071. https://doi.org/10.1016/j.scitotenv.2021.152071. | 미소장 |
25 | Ju WJ, An J, Jho EH (2021) Adsorption characteristics of Cd and Pb on microplastic films generated in agricultural environment. Journal of Korean Society of Environmental Engineers, 43, 32-42. https://doi.org/10.4491/KSEE.2021.43.1.32. | 미소장 |
26 | El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Journal of Hazardous Materials, 152, 263-275. https://doi.org/10.1016/j.jhazmat.2007.06.091. | 미소장 |
27 | Seo YJ, Lee RI, Jho EH (2022) Sorption characteristics of tetracycline in water on microplastics. Korean Journal of Environmental Agriculture, 41(4), 276-281. https://doi.org/10.5338/KJEA.2022.41.4.33. | 미소장 |
28 | Park H, Singhal N, Jho EH (2015) Lithium sorption properties of HMnO in seawater and wastewater. Water Research, 87, 320-327. https://doi.org/10.1016/j.watres.2015.09.032. | 미소장 |
29 | Razanajatovo RM, Ding J, Zhang S, Jiang H, Zou H (2018) Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Marine Pollution Bulletin, 136, 516-523. https://doi.org/10.1016/j.marpolbul.2018.09.048. | 미소장 |
30 | Mondal T, Jho EH, Hwang SK, Hyeon Y, Park C (2023) Responses of earthworms exposed to lowdensity polyethylene microplastic fragments. Chemosphere, 333, 138945. https://doi.org/10.1016/j.chemosphere.2023.138945. | 미소장 |
31 | Zhang S, Li L, Meng G, Zhang X, Hou L, Hua X, Wang M (2021) Environmental behaviors of procymidone in different types of Chinese soil. Sustainability, 13, 6712. https://doi.org/10.3390/su13126712. | 미소장 |
32 | Guo X, Pang J, Chen S, Jia H (2018) Sorption properties of tylosin on four different microplastics. Chemosphere, 209, 240-245. https://doi.org/10.1016/j.chemosphere.2018.06.100. | 미소장 |
33 | Beriot N, Zomer P, Zornoza R, Geissen V (2020) A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ, 8, e9876. https://doi.org/10.7717/peerj.9876. | 미소장 |
34 | Jiang M, Hu L, Lu A, Liang G, Lin Z, Zhang T, Xu L, Li B, Gong W (2020) Strong sorption of two fungicides onto biodegradable microplastics with emphasis on the negligible role of environmental factors. Environmental Pollution, 267, 115496. https://doi.org/10.1016/j.envpol.2020.115496. | 미소장 |
35 | Gong W, Jiang M, Han P, Liang G, Zhang T, Liu G (2019) Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics. Environmental Pollution, 254, 112927. https://doi.org/10.1016/j.envpol.2019.07.095. | 미소장 |
36 | Fang S, Yu W, Li C, Liu Y, Qiu J, Kong F (2019)Adsorption behavior of three triazole fungicides on polystyrene microplastics. Science of The Total Environment, 691, 1119-1126. https://doi.org/10.1016/j.scitotenv.2019.07.176. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내14
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.