본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

Beluga whale optimization (BWO) algorithm is a recently proposed population intelligence algorithm. Inspired by the swimming, foraging, and whale falling behaviors of beluga whale populations, it shows good competitive performance compared to other state-of-the-art algorithms. However, the original BWO faces the challenges of unbalanced exploration and exploitation, premature stagnation of iterations, and low convergence accuracy in high-dimensional complex applications. Aiming at these challenges, a hybrid BWO based on the jellyfish search optimizer (HBWO-JS), which combines the vertical crossover operator and Gaussian variation strategy with a fusion of jellyfish search (JS) optimizer, is developed for solving global optimization in this paper. First, the BWO algorithm is fused with the JS optimizer to improve the problem that BWO tends to fall into the best local solution and low convergence accuracy in the exploitation stage through multi-stage exploration and collaborative exploitation. Then, the introduced vertical cross operator solves the problem of unbalanced exploration and exploitation processes by normalizing the upper and lower bounds of two stochastic dimensions of the search agent, thus further improving the overall optimization capability. In addition, the introduced Gaussian variation strategy forces the agent to explore the minimum neighborhood, extending the entire iterative search process and thus alleviating the problem of premature stagnation of the algorithm. Finally, the superiority of the proposed HBWO-JS is verified in detail by comparing it with basic BWO and eight state-of-the-art algorithms on the CEC2019 and CEC2020 test suites, respectively. Also, the scalability of HBWO-JS is evaluated in three dimensions (10D, 30D, 50D), and the results show the stable performance of the proposed algorithm in terms of dimensional scalability. In addition, three practical engineering designs and two Truss topology optimization problems demonstrate the practicality of HBWO-JS. The optimization results show that HBWO-JS has a strong competitive ability and broad application prospects.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Hyperparameters optimization of convolutional neural network based on local autonomous competition harmony search algorithm Dongmei Liu, Haibin Ouyang, Steven Li, Chunliang Zhang, Zhi-Hui Zhan p. 1280-1297
Damage visualization and vulnerability assessment of surface ship considering the 3D multihit location of air-explosion threat Kwang Sik Kim, Jang Hyun Lee, Joon Young Yoon p. 1298-1313
Multi-strategy remora optimization algorithm for solving multi-extremum problems Heming Jia, Yongchao Li, Di Wu, Honghua Rao, Changsheng Wen, Laith Abualigah p. 1315-1349
Airfoil GAN : encoding and synthesizing airfoils for aerodynamic shape optimization Yuyang Wang, Kenji Shimada, Amir Barati Farimani p. 1350-1362
Enhancing feature selection with GMSMFO : a global optimization algorithm for machine learning with application to intrusion detection Nazar K. Hussein, Mohammed Qaraad, Souad Amjad, M.A. Farag, Saima Hassan, Seyedali Mirjalili, Mostafa A. Elhosseini p. 1363-1389
(An) improved reptile search algorithm with ghost opposition-based learning for global optimization problems Heming Jia, Chenghao Lu, Di Wu, Changsheng Wen, Honghua Rao, Laith Abualigah p. 1390-1422
Detecting balling defects using multisource transfer learning in wire arc additive manufacturing Seung-Jun Shin, Sung-Ho Hong, Sainand Jadhav, Duck Bong Kim p. 1423-1442
Airfoil optimization using design-by-morphing Haris Moazam Sheikh, Sangjoon Lee, Jinge Wang, Philip S Marcus p. 1443-1459
Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems Marta Gil Pérez, Pascal Mindermann, Christoph Zechmeister, David Forster, Yanan Guo, Sebastian Hügle, Fabian Kannenberg, Laura Balangé, Volker Schwieger, Peter Middendorf, Manfred Bischoff, Achim Menges, Götz T. Gresser, Jan Knippers p. 1460-1478
Mixed-reality for quadruped-robotic guidance in SAR tasks Christyan Cruz Ulloa, Jaime del Cerro, Antonio Barrientos p. 1479-1489
(A) C3 continuous double circumscribed corner rounding method for five-axis linear tool path with improved kinematics performance Guangwen Yan, Desheng Zhang, Jinting Xu, Yuwen Sun p. 1490-1506
(A) state-dependent M/M/1 queueing location-allocation model for vaccine distribution using metaheuristic algorithms Fatemeh Hirbod, Masoud Eshghali, Mohammad Sheikhasadi, Fariborz Jolai, Amir Aghsami p. 1507-1530
Crack growth degradation-based diagnosis and design of high pressure liquefied natural gas pipe via designable data-augmented anomaly detection Dabin Yang, Sanghoon Lee, Jongsoo Lee p. 1531-1546
Adaptive neural network ensemble using prediction frequency Ungki Lee, Namwoo Kang p. 1547-1560
Data-driven intelligent computational design for products : method, techniques, and applications Maolin Yang, Pingyu Jiang, Tianshuo Zang, Yuhao Liu p. 1561-1578
Split liability assessment in car accident using 3D convolutional neural network Sungjae Lee, Yong-Gu Lee p. 1579-1601
Broken stitch detection system for industrial sewing machines using HSV color space and image processing techniques Hyungjung Kim, Hyunsu Lee, Semin Ahn, Woo-Kyun Jung, Sung-Hoon Ahn p. 1602-1614
HBWO-JS : jellyfish search boosted hybrid beluga whale optimization algorithm for engineering applications Xinguang Yuan, Gang Hu, Jingyu Zhong, Guo Wei p. 1615-1656
Computational examination of non-Darcian flow of radiative ternary hybridity Casson nanoliquid through moving rotary cone Fuzhang Wang, Tanveer Sajid, Nek Muhammad Katbar, Wasim Jamshed, Usman, Mohamed R. Eid, Assmaa Abd-Elmonem, Siti Suzilliana Putri Mohamed Isa, Sayed M. El Din p. 1657-1676
Robust deep learning-based fault detection of planetary gearbox using enhanced health data map under domain shift problem Taewan Hwang, Jong Moon Ha, Byeng D. Youn p. 1677-1693
EfficientNetV2-based dynamic gesture recognition using transformed scalogram from triaxial acceleration signal Bumsoo Kim, Sanghyun Seo p. 1694-1706
Berth allocation and scheduling at marine container terminals : a state-of-the-art review of solution approaches and relevant scheduling attributes Bokang Li, Zeinab Elmi, Ashley Manske, Edwina Jacobs, Yui-yip Lau, Qiong Chen, Maxim A. Dulebenets p. 1707-1735
Topology optimization via machine learning and deep learning : a review Seungyeon Shin, Dongju Shin, Namwoo Kang p. 1736-1766
Quantum-inspired African vultures optimization algorithm with elite mutation strategy for production scheduling problems Bo Liu, Yongquan Zhou, Qifang Luo, Huajuan Huang p. 1767-1789
Advance algorithm for two-dimensional fibrous-network generation Yagiz Kayali, Andrew Gleadall, Vadim V. Silberschmidt, Emrah Demirci p. 1790-1803
Multi-head de-noising autoencoder-based multi-task model for fault diagnosis of rolling element bearings under various speed conditions Jongmin Park, Jinoh Yoo, Taehyung Kim, Jong Moon Ha, Byeng D. Youn p. 1804-1820
Differential evolution algorithm with improved crossover operation for combined heat and power economic dynamic dispatch problem with wind power Mengdi Li, Dexuan Zou, Haibin Ouyang p. 1821-1837
Data-mining-based identification of post-handover defect association rules in apartment housings Byeol Kim, Benson Teck Heng Lim, Bee Lan Oo, Yong Han Ahn p. 1838-1855
NURBS-based surface generation from 3D images : spectral construction and data-driven model selection Antoine Perney, Stéphane Bordas, Pierre Kerfriden p. 1856-1867
Sine cosine algorithm with communication and quality enhancement : performance design for engineering problems Helong Yu, Zisong Zhao, Jing Zhou, Ali Asghar Heidari, Huiling Chen p. 1868-1891

참고문헌 (82건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M. J., & El-Fergany, A. (2021). An improved artificial jellyfish search op-timizer for parameter identification of photovoltaic models. Ener-gies, 14, 1867. https://doi.org/10.3390/en14071867 . 미소장
2 Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A. A., & Gandomi, A. H. (2021a). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineer-ing, 157, 107250. https://doi.org/10.1016/j.cma.2020.113609 . 미소장
3 Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021b). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609. https://doi.org/10.1016/j.cma.2020.113609 . 미소장
4 Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. https://doi.org/10.1016/j.eswa.2021.116158 . 미소장
5 Akyol, S., & Alatas, B. (2017). Plant intelligence based metaheuristic optimization algorithms. Artificial Intelligence Review, 47, 417–462. https://doi.org/10.1007/s10462-016-9486-6 . 미소장
6 Alatas, B., & Bingöl, H. (2020). Comparative assessment of light-based intelligent search and optimization algorithms. Light & Engineer-ing, 28, 51–59. https://doi.org/10.33383/2019-029 . 미소장
7 Attiya, I., Abualigah, L., Alshathri, S., Elsadek, D., & Abd Elaziz, M. (2022). Dynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task scheduling. Mathematics, 10, 1894. http s://doi.org/10.3390/math10111894 . 미소장
8 Awad, N. H., Ali, M. Z., Suganthan, P. N., & Reynolds, R. G. (2016). An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In 2016 IEEE Congress on Evolutionary Computation (CEC), 1, (pp. 2958–2965). ht tps://doi.org/10.1109/CEC.2016.7744163 . 미소장
9 Awadallah, M. A., Al-Betar, M. A., Braik, M. S., Hammouri, A. I., Doush, I. A., & Zitar, R. A. (2022). An enhanced binary Rat Swarm Op-timizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Computers in Biology and Medicine, 147, 105675. https://doi.org/10.1016/j.compbiomed.202 2.105675 . 미소장
10 Bayzidi, H., Talatahari, S., Saraee, M., & Lamarche, C.-P. (2021). Social network search for solving engineering optimization problems. Computational Intelligence and Neuroscience, 2021, 8548639. https://doi.org/10.1155/2021/8548639 . 미소장
11 Braik, M., Hammouri, A., Atwan, J ., Al-Betar, M. A., & Awadallah, M. A. (2022). White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowledge-Based Systems, 243, 108457. https://doi.org/10.1016/j.knosys.2022. 108457 . 미소장
12 Chakraborty, S ., Sharma, S ., Saha, A. K., & Chakraborty, S. (2021). SHADE–wo A: A metaheuristic algorithm for global optimization. Applied Soft Computing, 113, 107866. https://doi.org/10.1016/j.asoc .2021.107866 . 미소장
13 Chegini, S. N., Bagheri, A., & Najafi, F. (2018). PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Applied Soft Computing, 73, 697–726. https: //doi.org/10.1016/j.asoc.2018.09.019 . 미소장
14 Chen, N., Xie, N., & Wang, Y. (2022). An elite genetic algorithm for flex-ible job shop scheduling problem with extracted greyprocessing time. Applied Soft Computing, 131, 109783. https://doi.org/10.1016/j.asoc.2022.109783 . 미소장
15 Cheng, Z., Song, H., Chang, T., & Wang, J. (2022). An improved mixed-coded hybrid firefly algorithm for the mixed-discrete SSCGR prob-lem. Expert Systems with Applications, 188, 116050. https://doi.org/10.1016/j.eswa.2021.116050 . 미소장
16 Chou, J.-S., & Truong, D.-N. (2021). A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation, 389, 125535. https://doi.org/10.1016/j.amc.2020.125 535 . 미소장
17 Ezzeldin, R., El-Ghandour, H., & El-Aabd, S. (2022). Optimal man-agement of coastal aquifers using artificial jellyfish search al-gorithm. Journal of Hydrology: Regional Studies, 41, 101058. https: //doi.org/10.1016/j.ejrh.2022.101058 . 미소장
18 Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop scheduling problemusing DE algorithm improved by a selection mechanism. IEEE Transactions on Fuzzy Systems, 28, 3265–3275. https://doi.org/10.1109/TFUZZ.2020 .3003506 . 미소장
19 Gezici, H., & Livatyali, H. (2022). Chaoticharris hawks optimization algorithm. Journal of Computational Design and Engineering, 9, 216–245. https://doi.org/10.1093/jcde/qwab082 . 미소장
20 Gharehchopogh, F. S., & Abdollahzadeh, B. (2022). An efficient harrishawk optimization algorithm for solving the travelling salesman problem. Cluster computing, 25, 1981–2005. https://doi.org/10.100 7/s10586-021-03304-5 . 미소장
21 Griffiths, E. J., & Orponen, P. (2005). Optimization, block designs and No Free Lunch theorems. Information Processing Letters, 94, 55–61. https://doi.org/10.1016/j.ipl.2004.12.015 . 미소장
22 Hare, W., Nutini, J ., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in En-gineering Software, 59, 19–28. https://doi.org/10.1016/j.advengsoft .2013.03.001 . 미소장
23 Hashim, F. A., & Hussien, A. G. (2022). Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowledge-Based Systems, 242, 108320. https://doi.org/10.1016/j.knosys.2022.108320 . 미소장
24 He, L., & Huang, S. (2020). An efficient krill herd algorithm for color image multilevel thresholding segmentation problem. Applied Soft Computing, 89, 106063. https://doi.org/10.1016/j.asoc.2020.10 6063 . 미소장
25 He, L., Li, W., Chiong, R., Abedi, M., Cao, Y., & Zhang, Y. (2021). Opti-mising the job-shop scheduling problem using a multi-objective Jay a algorithm. Applied Soft Computing, 111, 107654. https://doi.or g/10.1016/j.asoc.2021.107654 . 미소장
26 Hu, G ., Zhu, X., Wei, G ., & Chang, C.-T. (2021). An improved marine predators algorithm for shape optimization of de-velopable Ball surfaces. Engineering Applications of Artificial Intelligence, 105, 104417. https://doi.org/10.1016/j.engappai.2021. 104417 . 미소장
27 Hu, H. Y.et al. (2022a). Horizontal and vertical crossover of sine cosine algorithm with quick moves foroptimization and feature selec-tion. Journal of Computational Design and Engineering, 9, 2524–2555. https://doi.org/10.1093/jcde/qwac119 . 미소장
28 Hu, G ., Zhong, J., Wang, X., & Wei, G . (2022b). Multi-strategy assisted chaotic coot-inspired optimization algorithm for medical feature selection: A cervical cancer behavior risk study. Computers in Biol-ogy and Medicine, 151, 106239. https://doi.org/10.1016/j.amc.2020 .125535 . 미소장
29 Hu, G ., Dou, W., Wang, X., & Abbas, M. (2022c). An enhanced chimp optimization algorithm for optimal degree reduction of Said–Ball curves. Mathematics and Computers in Simulation, 197, 207–252. ht tps://doi.org/10.1016/j.matcom.2022.01.018 . 미소장
30 Hu, G ., Du, B., Wang, X., & Wei, G . (2022d). An enhanced black widow optimization algorithm for feature selection. Knowledge-Based Systems, 235, 107638. https://doi.org/10.1016/j.knosys.2021.1076 38 . 미소장
31 Hu, G ., Li, M., Wang, X., Wei, G ., & Chang, C.-T. (2022e). An enhanced manta r ay for aging optimization algorithm for shape optimiza-tion of complex CCG-Ball curves. Knowledge-Based Systems, 240, 108071. https://doi.org/10.1016/j.knosys.2021.108071 . 미소장
32 Hu, G ., Zhong, J., Du, B., & Wei, G . (2022f). An enhanced hybrid arith-metic optimization algorithm forengineering applications. Com-puter Methods in Applied Mechanics and Engineering, 394, 114901. https://doi.org/10.1016/j.cma.2022.114901 . 미소장
33 Hu, G, Wang, J, Li, M, Hussien, AG, & Abbas, M. (2023a). EJS: Multi-str ategy enhanced jellyfish search algorithm for engineering Ap-plications. Mathematics . 11, 851. https://doi.org/10.3390/math11 040851 . 미소장
34 Hu, G ., Zhong, J., & Wei, G . (2023b). SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning. Ex-pert Systems with Applications, 223, 119941. https://doi.org/10.101 6/j.eswa.2023.119941 . 미소장
35 Hu, G ., Yang, R., Qin, X., & Wei, G . (2023c). MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm forengi-neering applications. Computer Methods in Applied Mechanics and Engineering, 403, 115676. https://doi.org/10.1016/j.cma.2022.115 676 . 미소장
36 Hu, G ., Zhong, J., Wei, G ., & Chang, C.-T. (2023d). DTCSMO: An efficient hybrid starling murmur ation optimizer for engineering Applica-tions. Computer Methods in Applied Mechanics and Engineering, 405, 115878. https://doi.org/10.1016/j.cma.2023.115878 . 미소장
37 Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214, 108–132. https://doi.org/10.1016/j.amc.2009.03.090 . 미소장
38 Kaveh, A., & Zolghadr, A. (2013). Topology optimization of trusses considering static and dynamic constraints using the CSS. Ap-plied Soft Computing, 13, 2727–2734. https://doi.org/10.1016/j.asoc .2012.11.014 . 미소장
39 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 -International Conference on Neural Networks, Vol. 4, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 . 미소장
40 Lei, Y., F an, L., Yang, J ., & Si, W. (2022). Fractional-order boosted jelly-fish search optimizer with gaussian mutation for income forecast of rural resident. Computational Intelligence and Neuroscience, 2022, 3343505. https://doi.org/10.1155/2022/3343505 . 미소장
41 Li, X. N ., W u, H., Yang, Q., Tan, S., Xue, P., & Yang, X. H. (2022). A mul-tistrategy hybrid adaptive whale optimization algorithm. Jour-nal of Computational Design and Engineering, 9, 1952–1973. https: //doi.org/10.1093/jcde/qwac092 . 미소장
42 Ma, B., Hu, Y. T., Lu, P. M., & Liu, Y. G. (2023). Running city game op-timizer: a game-based metaheuristic optimization algorithm for global optimization. Journal of Computational Design and Engineer-ing, 10, 65–107. https://doi.org/10.1093/jcde/qwac092 . 미소장
43 Meng, A.-B., Chen, Y.-C., Yin, H., & Chen, S.-Z. (2014). Crisscross opti-mization algorithm and its application. Knowledge-Based Systems, 67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004 . 미소장
44 Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Ad-vances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j. advengsoft.2016.01.008 . 미소장
45 Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.101 6/j.advengsoft.2013.12.007 . 미소장
46 Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 145–152. https://doi.org/10.1 109/CEC.2017.7969307 . 미소장
47 Nadimi-Shahraki, M. H., & Zamani, H. (2022). DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Sys-tems with Applications, 198, 116895. https://doi.org/10.1016/j.eswa .2022.116895 . 미소장
48 Nama, S.(2022). A novel improved SMA with quasi reflection opera-tor: Performance analysis, Application to the image segmentation problem of Covid-19 chest X-ray images . Applied Soft Computing, 118, 108483. https://doi.org/10.1016/j.asoc.2022.108483 . 미소장
49 Premkumar, M., Jangir, P., Sowmy a, R., Alhelou, H. H., Mirjalili, S., & Kumar, B. S. (2022). Multi-objective equilibrium optimizer: frame-work and development for solving multi-objective optimization problems. Journal of Computational Design and Engineering, 9, 24–50. https://doi.org/10.1093/jcde/qwab065 . 미소장
50 Qi, A. L., Zhao, D., Yu, F. H., Heidari, A. A., Chen, H. L., & Xiao, L. (2022a). Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9, 519–563. https: //doi.org/10.1093/jcde/qwac014 . 미소장
51 Qi, A. L.et al. (2022b). Directional crossover slime mould algorithm with adAptive Le vy diversity for the optimal design of real-world problems. Journal of Computational Design and Engineering, 9, 2375–2418. https://doi.org/10.1093/jcde/qwac111 . 미소장
52 Qiao, S. M., Yu, H. L., Heidari, A. A., El-Saleh, A. A., Cai, Z. N., Xu, X. M., Mafarja, M., & Chen, H. L. (2022). Individual disturbance and neighborhood mutation search enhanced whale optimization: performance design for engineering problems. Journal of Compu-tational Design and Engineering, 9, 1817–1851. https://doi.org/10.1 093/jcde/qwac081 . 미소장
53 Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A grav-itational search algorithm. Information Sciences, 179, 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 . 미소장
54 Saafan, M. M., & El-Gendy, E. M. (2021). IWOSSA: An im-proved whale optimization salp swarm algorithm for solving optimization problems. Expert Systems with Applications, 176, 114901. https://doi.org/10.1016/j.eswa.202 1.114901 . 미소장
55 Saha, A. K.(2022). Multi-population-based adAptive sine cosine al-gorithm with modified mutualism strategy for global optimiza-tion. Knowledge-Based Systems, 251, 109326. https://doi.org/10.101 6/j.knosys.2022.109326 . 미소장
56 Salgotra, R., Singh, S., Singh, U., Mirjalili, S., & Gandomi, A. H. (2023). Marine predator inspired naked mole-r at algorithm for global op-timization. Expert Systems with Applications, 212, 118822. https: //doi.org/10.1016/j.eswa.2022.118822 . 미소장
57 Seyyedabbasi, A. (2022). wo ASCALF: A new hybrid whale optimiza-tion algorithm based on sine cosine algorithm and levy flight to solve global optimization problems. Advances in Engineering Soft-ware, 173, 103272. https://doi.org/10.1016/j.advengsoft.2022.1032 72 . 미소장
58 Shan, W. F., He, X. X., Liu, H. J., Heidari, A. A., Wang, M. F., Cai, Z. N., & Chen, H. L. (2023). Cauchy mutation boosted Harris hawk al-gorithm: optimal performance design and engineering applica-tions. Journal of Computational Design and Engineering, 10, 503–526. https://doi.org/10.1093/jcde/qwad002 . 미소장
59 Shu, X. L., Liu, Y. M., Liu, J ., Yang, M. L., & Zhang, Q. (2023). Multi-objective particle swarm optimization with dynamic population size. Journal of Computational Design and Engineering, 10, 446–467. https://doi.org/10.1093/jcde/qwac139 . 미소장
60 Storn, R., & Price, K. (1997). Differential evolution—a simple and ef-ficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328 . 미소장
61 Su, H., Zhao, D., Yu, F. H., Heidari, A. A., Xu, Z. Z., Alotaibi, F. S., Ma-farja, M., & Chen, H. L. (2023). A horizontal and vertical cross over cuckoo search: optimizing performance for the engineering prob-lems. Journal of Computational Design and Engineering, 10, 36–64. https://doi.org/10.1093/jcde/qwac112 . 미소장
62 Sultan, H. M., Menesy, A. S., Kamel, S., Selim, A., & Jurado, F. (2020). P ar ameter identification of proton exchange membrane fuel cells using an improved salp s warm algorithm. Energy Conversion and Management, 224, 113341. https://doi.org/10.1016/j.enconman.2 020.113341 . 미소장
63 Talatahari, S., Azizi, M., Tolouei, M., Talatahari, B., & Sareh, P. (2021). Crystal structure algorithm (CryStAl): A metaheuristic optimiza-tion method. IEEE Access, 9, 71244–71261. https://doi.org/10.1109/A CCESS.2021.3079161 . 미소장
64 Tanabe, R., & Fukunaga, A. S. (2014). Improving the search perfor-mance of SHADE using linear population size reduction. 2014 IEEE Congress on Evolutionary Computation (CEC),IEEE, 1658–1665. https://doi.org/10.1109/CEC.2014.6900380 . 미소장
65 Tejani, G . G ., Savsani, V. J., Patel, V. K., & Savsani, P. V. (2018). Size, shape, and topology optimization of planar and space trusses us-ing mutation-based improved metaheuristics. Journal of Computa-tional Design and Engineering, 5, 198–214. https://doi.org/10.1016/j. jcde.2017.10.001 . 미소장
66 Tejani, G . G ., Savsani, V. J., Bureer at, S., Patel, V. K., & Savsani, P. (2019). Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing ve-hicle search algorithms. Engineering with Computers, 35, 499–517. https://doi.org/10.1007/s00366-018-0612-8 . 미소장
67 Truong, D .-N., & Chou, J.-S. (2022). Fuzzyad Aptive jellyfish search-optimized sta king machine learning forengineering planning and design. Automation in Construction, 143, 104579. https://doi.or g/10.1016/j.autcon.2022.104579 . 미소장
68 Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artifi-cial rabbits optimization: A new bio-inspired meta-heuristic al-gorithm for solving engineering optimization problems. Engineer-ing Applications of Artificial Intelligence, 114, 105082. https://doi.or g/10.1016/j.engappai.2022.105082 . 미소장
69 Yang, W., Xia, K., Fan, S., Wang, L., Li, T., Zhang, J., & Feng, Y. (2022). A Multi-Strategy Whale Optimization Algorithm and Its Applica-tion. Engineering Applications of Artificial Intelligence, 108, 104558. https://doi.org/10.1016/j.engappai.2021.104558 . 미소장
70 Yildiz, B. S., Mehta, P., Panagant, N., Mirjalili, S ., & Y ildiz, A. R. (2022). A novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problems. Journal of Computational Design and Engineering, 9, 2452–2465. https://doi.org/10.1093/jcde/qwac1 13 . 미소장
71 Youn, B. D., & Choi, K. K. (2004). A ne w response surface methodology for reliability-based design optimization. Computers & Structures, 82, 241–256. https://doi.org/10.1016/j.compstruc.2003.09.002 . 미소장
72 Yu, H. L., Qiao, S. M., Heidari, A. A., El-Saleh, A. A., Bi, C. G., Mafarja, M., Cai, Z. N., & Chen, H. L. (2022). LAplace crossover and random replacement strategy boosted Harris hawks optimization: perfor-mance optimization and anal ysis. Journal of Computational Design and Engineering, 9, 1879–1916. https://doi.org/10.1093/jcde/qwac0 85 . 미소장
73 Yu, X., Zhao, Q., Lin, Q., & Wang, T. (2023). A grey wolf optimizer-based chaotic gravitational search algorithm for global optimization. The Journal of Super computing, 79, 2691–2739. https://doi.org/10.1 007/s11227-022-04754-3 . 미소장
74 Zhang, Y., & Jin, Z. (2020). Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization prob-lems. Expert Systems with Applications, 148, 113246. https://doi.or g/10.1016/j.eswa.2020.113246 . 미소장
75 Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameterestima-tion problem. Knowledge-Based Systems, 163, 283–304. https://doi. org/10.1016/j.knosys.2018.08.030 . 미소장
76 Zhao, S., Zhang, T., Ma, S., & Chen, M. (2022a). Dandelion Optimizer: A nature-inspired metaheuristic algorithm forengineering applica-tions. Engineering Applications of Artificial Intelligence, 114, 105075. https://doi.org/10.1016/j.engappai.2022.105075 . 미소장
77 Zhao, W., Wang, L., & Mirjalili, S. (2022b). Artificial hummingbird al-gorithm: A ne w bio-inspired optimizer with its engineering Ap-plications. Computer Methods in Applied Mechanics and Engineering, 388, 114194. https://doi.org/10.1016/j.cma.2021.114194 . 미소장
78 Zhao, S., Wang, P., Heidari, A. A., Zhao, X., & Chen, H. (2023). Boosted crow search algorithm for handling multi-threshold image prob-lems with application to X-ray images of COVID-19. Expert Systems with Applications, 213, 119095. https://doi.org/10.1016/j.eswa.202 2.119095 . 미소장
79 Zheng, J., Hu, G ., Ji, X., & Qin, X. (2022). Quintic generalized Hermite inter polation curves: construction and shape optimization using an improved GWO algorithm. Computational and Applied Mathemat-ics, 41, 115. https://doi.org/10.1007/s40314-022-01813-6 . 미소장
80 Zheng, R., Hussien, A. G., Qaddoura, R., Jia, H. M., Abualigah, L., Wang, S., & Saber, A. (2023). A multi-strategy enhanced African vultures optimization algorithm for global optimization problems. Journal of Computational Design and Engineering, 10, 329–356. https://doi.or g/10.1093/jcde/qwac135 . 미소장
81 Zhong, C., Li, G., & Meng, Z. (2022). Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowledge-Based Systems, 251, 109215. https://doi.org/10.1016/j.knosys.2022.1092 15 . 미소장
82 Zhou, X. S., Gui, W. Y., Heidari, A. A., Cai, Z. N., Elmannai, H., Hamdi, M., Liang, G . X., & Chen, H. L. (2022). Advanced orthogonal learn-ing and Gaussian barebone hunger games forengineering de-sign. Journal of Computational Design and Engineering, 9, 1699–1736. https://doi.org/10.1093/jcde/qwac075 . 미소장