권호기사보기
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
|---|---|---|---|---|---|---|---|---|---|
| 연구/단체명을 입력해주세요. | |||||||||
|
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차 1
선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술 = Semi-supervised SAR image classification via adaptive threshold selection / 도재준 ; 유민정 ; 이재석 ; 문효이 ; 김선옥 1
Abstract 1
1. 서론 1
2. 관련 연구 2
2.1. 준지도 학습법 2
2.2. 데이터 증강 방법 3
3. FixMatch기반 클래스 별 임계값 설정 학습 모델 3
3.1. FixMatch 프레임워크 3
3.2. Data augmentation with speckle noise 5
3.3. 클래스 별 임계값 6
4. 실험 및 결과 7
4.1. 실험 환경 및 데이터셋 7
4.2. Backbone 모델 구조 7
4.3. 실험 결과 7
5. 결론 8
References 9
| 번호 | 참고문헌 | 국회도서관 소장유무 |
|---|---|---|
| 1 | F, Pierre, et al., “Sharpness-aware minimization for efficiently improving generalization,” arXiv preprint arXiv:2010.01412, 2020. | 미소장 |
| 2 | M, Wortsman, et al., “Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time,”International Conference on Machine Learning, PMLR, 2022. | 미소장 |
| 3 | H, M. Kabir, “Reduction of Class Activation Uncertainty with Background Information,” arXiv preprint arXiv:2305.03238, 2023. | 미소장 |
| 4 | Z, Yang, et al., “SAR image classification method based on improved capsule network,” Journal of Physics: Conference Series, Vol. 1693, No. 1, IOP Publishing, 2020. | 미소장 |
| 5 | S, Chen, et al., “Target classification using the deep convolutional networks for SAR images,” IEEE transactions on geoscience and remote sensing 54.8, 4806-4817, 2016. | 미소장 |
| 6 | H, Ren, et al., “Extended convolutional capsule network with application on SAR automatic target recognition,” Signal Processing 183 : 108021, 2021. | 미소장 |
| 7 | Q, Xie, et al., “Self-training with noisy student improves imagenet classification,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020. | 미소장 |
| 8 | E, Arazo, et al., “Pseudo-labeling and confirmation bias in deep semi-supervised learning,” 2020International Joint Conference on Neural Networks (IJCNN), IEEE, 2020. | 미소장 |
| 9 | D, Berthelot, et al., “Mixmatch: A holistic approach to semi-supervised learning,” Advances in neural information processing systems 32, 2019. | 미소장 |
| 10 | D, Berthelot, et al., “Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring,” arXiv preprint arXiv:1911.09785, 2019. | 미소장 |
| 11 | K, Sohn, Kihyuk, et al., “Fixmatch: Simplifying semi-supervised learning with consistency and confidence,” Advances in neural information processing systems 33 : 596-608, 2020. | 미소장 |
| 12 | T, Chen, et al., “A simple framework for contrastive learning of visual representations,” International conference on machine learning, PMLR, 2020. | 미소장 |
| 13 | R, Shams, “Semi-supervised classification for natural language processing,” arXiv preprint arXiv:1409.7612, 2014. | 미소장 |
| 14 | A, Anaby-Tavor, et al., “Do not have enough data? Deep learning to the rescue!,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 05, 2020. | 미소장 |
| 15 | B, Zhang, et al., “Censer: Curriculum semi-supervised learning for speech recognition based on self supervised pre-training,” arXiv preprint arXiv:2206. 08189, 2022. | 미소장 |
| 16 | V, Tsouvalas, et al., “Federated self-training for semi-supervised audio recognition,” ACM Transactions on Embedded Computing Systems 21.6 : 1-26, 2022. | 미소장 |
| 17 | M, Sajjadi, et al., “Regularization with stochastic transformations and perturbations for deep semi supervised learning,” Advances in neural information processing systems 29, 2016. | 미소장 |
| 18 | X, Wang, et al., “Contrastive learning with stronger augmentations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. | 미소장 |
| 19 | E, Cubuk, et al., “Randaugment: Practical automated data augmentation with a reduced search space,”Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020. | 미소장 |
| 20 | ED, Cubuk, et al., “Autoaugment: Learning augmentation strategies from data,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019. | 미소장 |
| 21 | Y, Lei, et al., “Synthetic Images Augmentation for Robust SAR Target Recognition,” 2021 The 5th International Conference on Video and Image Processing, 2021. | 미소장 |
| 22 | C, Hyunho, and J, Jechang, et al., “Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform,” Remote Sensing 11.10 (2019): 1184. | 미소장 |
| 23 | X, Zhang, et al., “A Novel Data Augmentation Method for SAR Image Target Detection and Recognition,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, 2021. | 미소장 |
| 24 | M, Zhang, et al., “Data augmentation method of SAR image dataset,” IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2018. | 미소장 |
| 25 | K, Choi, et al., “Deep Cascade Network for Noise-Robust SAR Ship Detection With Label Augmentation,” in IEEE Geoscience and Remote Sensing Letters, Vol. 19, pp. 1-5, 2022, Art No. 4514005, doi: 10.1109/LGRS.2022.3205715. | 미소장 |
| 26 | ER, Keydel, et al., “MSTAR extended operating conditions: A tutorial,” Algorithms for Synthetic Aperture Radar Imagery III 2757, 228-242, 1996. | 미소장 |
| 27 | S, Zagoruykond Nikos Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016. | 미소장 |
| 28 | C, Coman, “A deep learning SAR target classification experiment on MSTAR dataset,” 2018 19th international radar symposium(IRS), IEEE, 2018. | 미소장 |
*표시는 필수 입력사항입니다.
| 전화번호 |
|---|
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
|---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내12
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.