본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
중요도 검출을 적용한 사람 재식별 성능 개선 = Improved person re-identification performance using saliency detection 전하용 p. 555-562
애니메이션 얼굴 변환을 위한 적응형 특징 융합 연동 다중 스케일 어텐션 활용 비지도 GAN 모델 개발 = Multi-scale attention GAN with adaptive feature fusion for unsupervised animation face generation 한아영, 김경태, 최재영 p. 563-576
2차원 평면 어레이 스캐닝의 고스트 포인트 잡음 실시간 소거 알고리즘 = Real-time ghost point noise reduction algorithm for 2D plane array scanning 이중호 p. 577-584
계층 관련성 전파와 DNN을 이용한 PM2.5 예보 지수별 입력 인자의 기여도 특성 분석 = Analysis of input factor contributions characteristics by index in PM2.5 forecast using layer-wise relevance propagation and DNN 유숙현 p. 585-599
근로여성을 위한 생애주기별 건강관리플랫폼 설계의 기본 방향 = Basic directions of designing a health-care platform by life cycle for working women 김미연 p. 600-610
무빙 포스터 디자인 형태적 특성 분석 = Analysis of form characteristics of moving poster design : focused on archive posters on ‘themovingposter.com’ : ‘themovingposter.com’의 아카이브 포스터 중심으로 전혜연 p. 611-619
홀로그램 서비스 품질이 이용자 만족에 미치는 영향 = Effect of hologram service quality on user satisfaction : mediating effect of perceived usefulness : 지각된 유용성의 매개효과 백승민 p. 620-631
비전 트랜스포머를 이용한 단일 리드 심전도 기반 사용자 인증 시스템 = Single lead electrocardiogram based user authentication using vision transformer 김상규, 유선국, 강희철 p. 632-641

참고문헌 (17건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 1 ] A. Jain, R. Bolle, and S. Pankanti, Biometrics:Personal Identification in Networked Society, Springer Science & Business Media, Vol. 479, 1999. 미소장
2 2 ] J.S. Kim, S.H. Kim, and S.B. Pan, “Personal Recognition Using Convolutional Neural Network with ECG Coupling Image,” Journal of Ambient Intelligence and Humanized Computting, Vol. 11, pp. 1923-1932, 2020. 미소장
3 3 ] N. Karimian, D. Woodard, and D. Forte, “ECG Biometric: Spoofing and Countermeasures,”IEEE Transactions on Biometrics, Behavior, and Identity Science, Vol. 2, No. 3, pp. 257-270, 2020. 미소장
4 4 ] S. Hamza and Y.B. Ayed, “An Integration of Features for Person Identification Based n the PQRST Fragments of ECG Signals,” Signal, Image and Video Processing, Vol. 16, No. 8, pp. 2037-2043, 2022. 미소장
5 5 ] P.G. Gaddam and R.V. Sreehari, “Automatic Classification of Cardiac Arrhythmias Based on ECG Signals Using Transferred Deep Learning Convolution Neural Network,”Journal of Physics: Conference Series, Vol. 2089, No. 1, pp. 012058, 2021. 미소장
6 6 ] A.J. Prakash, K.K. Patro, M. Hammad, R. Tadeusiewicz, and P. Pławiak, “BAED: A Secured Biometric Authentication System Using ECG Signal Based on Deep Learning Techniques,” Biocybernetics and Biomedical Engineering, Vol. 42, No. 4, pp. 1081-1093, 2022. 미소장
7 7 ] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv Preprint, arXiv:2010.11929, 2020. 미소장
8 8 ] T.S. Lugovaya, Biometric Human Identification Based on Electrocardiogram, Master’s thesis of Faculty of Computing Technologies and Informatics, Electrotechnical University, 2005. 미소장
9 9 ] Z. Niu, G. Zhong, and H. Yu, “A Review on the Attention Mechanism of Deep Learning,”Neurocomputing, Vol. 452, pp. 48-62, 2021. 미소장
10 L. Guo, G. Sim, and B. Matuszewski, “Inter-Patient ECG Classification with Convolutional and Recurrent Neural Networks,” Biocybernetics and Biomedical Engineering, Vol. 39, No. 3, pp. 868-879, 2019. 미소장
11 S. Mousavi and F. Afghah, “Inter- and Intra-Patient ECG Heartbeat Classification for Arrhythmia Detection: A Sequence to Sequence Deep Learning Approach,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1308-1312, 2019. 미소장
12 J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,”arXiv Preprint, arXiv: 1810.04805, 2018. 미소장
13 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, et al., “Attention is All You Need,” Advances in Neural Information Processing Systems, 30 (NIPS 2017), 2017. 미소장
14 N. Ibtehaz, M. Chowdhury, A. Khandakar, S. Kiranyaz, M.S. Rahman, A. Tahirand, et al., “EDITH: ECG Biometrics Aided by Deep Learning for Reliable Individual Authentication,”IEEE Transactions on Emerging Topics in Computational Intelligence, Vol. 6, No. 4, pp. 928-940, 2021. 미소장
15 M. Karpinski, V. Khoma, V. Dudvkevych, Y. Khoma, and D. Sabodashko, “Autoencoder Neural Networks for Outlier Correction in ECG-Based Biometric Identification,” IEEE IDAACS-SWS, pp. 210-215, 2018. 미소장
16 H.M. Lynn, S.B. Pan, and P. Kim, “A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks,” IEEE Access, Vol. 7, pp. 145395-145405, 2019. 미소장
17 J. Choi, O. Kwon, J. Kwon, K. Oh, and S. Yoo, “Development of Signal Feature Extraction System for ECG-Based Heart Disease Classification,”Journal of Korea Multimedia Society, Vol. 26, No. 1, pp 75-83, 2023. 미소장