권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
최근 음성 생성 기술의 급격한 발전으로, 텍스트만으로도 자연스러운 음성 합성이 가능해졌다. 이러한 발전은 타인의 음성을 생성하여 범죄에 이용하는 보이스피싱과 같은 악용 사례를 증가시키는 결과를 낳고 있다. 음성 생성 여부를 탐지하는 모델은 많이 개발되고 있으며, 일반적으로 음성의 특징을 추출하고 이러한 특징을 기반으로 음성 생성 여부를 탐지한다. 본 논문은 생성 음성으로 인한 악용 사례에 대응하기 위해 새로운 음성 특징 추출 모델을 제안한다. 오디오를 입력으로 받는 딥러닝 기반 오디오 코덱 모델과 사전 학습된 자연어 처리 모델인 BERT를 사용하여 새로운 음성 특징 추출 모델을 제안하였다. 본 논문이 제안한 음성 특징 추출 모델이 음성 탐지에 적합한지 확인하기 위해 추출된 특징을 활용하여 4가지 생성 음성 탐지 모델을 만들어 성능평가를 진행하였다. 성능 비교를 위해 기존 논문에서 제안한 Deepfeature 기반의 음성 탐지 모델 3개와 그 외 모델과 정확도 및 EER을 비교하였다. 제안한 모델은 88.08%로 기존 모델보다 높은 정확도와 11.79%의 낮은 EER을 보였다. 이를 통해 본 논문에서 제안한 음성 특징 추출 방법이 생성 음성과 실제 음성을 판별하는 효과적인 도구로 사용될 수 있음을 확인하였다.
Recent rapid advancements in voice generation technology have enabled the natural synthesis of voices using text alone. However, this progress has led to an increase in malicious activities, such as voice phishing (voishing), where generated voices are exploited for criminal purposes. Numerous models have been developed to detect the presence of synthesized voices, typically by extracting features from the voice and using these features to determine the likelihood of voice generation.This paper proposes a new model for extracting voice features to address misuse cases arising from generated voices. It utilizes a deep learning-based audio codec model and the pre-trained natural language processing model BERT to extract novel voice features. To assess the suitability of the proposed voice feature extraction model for voice detection, four generated voice detection models were created using the extracted features, and performance evaluations were conducted. For performance comparison, three voice detection models based on Deepfeature proposed in previous studies were evaluated against other models in terms of accuracy and EER. The model proposed in this paper achieved an accuracy of 88.08% and a low EER of 11.79%, outperforming the existing models. These results confirm that the voice feature extraction method introduced in this paper can be an effective tool for distinguishing between generated and real voices.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내09
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.