권호기사보기
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
|---|---|---|---|---|---|---|---|---|---|
| 연구/단체명을 입력해주세요. | |||||||||
|
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Contents 1
Evaluating chest abnormalities detection : YOLOv7 and detection transformer with CycleGAN data augmentation / Yoshua Kaleb Purwanto ; Suk-Ho Lee ; Dae-Ki Kang 1
Abstract 1
1. Introduction 1
2. Related Work 2
2.1. You Only Look Once (YOLO) 2
2.2. Detection Transformer (DETR) 3
2.3. CycleGAN 4
2.4. Dataset : VinDr-CSR 5
3. Experiment Setup and Methodology 6
3.1. Setup Environment 6
3.2. Data Augmentation Scenario 6
3.3. Chest Abnormalities Detection 7
4. Result and Discussion 7
5. Conclusion 9
References 9
| 번호 | 참고문헌 | 국회도서관 소장유무 |
|---|---|---|
| 1 | A. Bochkovskiy, C. Wang, H. M. Liao, and R. Girshick, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," Apr. 2021. DOI: https://doi.org/10.48550/arXiv.2207.02696 | 미소장 |
| 2 | J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. DOI: https://doi.org/10.48550/arXiv.1506.02640 | 미소장 |
| 3 | J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr. 2018. DOI: https://doi.org/10.48550/arXiv.1804.02767 | 미소장 |
| 4 | A. Bochkovskiy, C. Wang, and H. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," Apr. 2020. DOI: https://doi.org/10.48550/arXiv.2004.10934 | 미소장 |
| 5 | N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-end object detection with transformers," in European Conference on Computer Vision (ECCV), 2020, pp. 213–229. Springer. DOI: https://doi.org/10.48550/arXiv.2005.12872 | 미소장 |
| 6 | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems (NeurIPS), 2017. DOI: https://doi.org/10.48550/arXiv.1706.03762 | 미소장 |
| 7 | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," Oct. 2020. DOI: https://doi.org/10.48550/arXiv.2010.11929 | 미소장 |
| 8 | Z. Chen, Y. Duan, W. Wang, J. He, T. Lu, J. Dai, and Y. Qiao, "Vision Tranformer Adapter for Dense Predictions," In Proceedings of the 9th International Conference on Learning Representations (ICLR), Feb. 2023. DOI: https://doi.org/10.48550/arXiv.2205.08534 | 미소장 |
| 9 | H. Q. Nguyen et al., "VinDr-CXR: An Open Dataset of Chest X-rays with Radiologist’s Annotations," Jan. 2022. DOI: https://doi.org/10.48550/arXiv.2012.15029 | 미소장 |
| 10 | J. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017. DOI: https://doi.org/10.48550/arXiv.1703.10593 | 미소장 |
| 11 | R. Zhang, P. Isola, and A. A. Efros, "Colorful image colorization," in European Conference on Computer Vision (ECCV), 2016. DOI: https://doi.org/10.48550/arXiv.1603.08511 | 미소장 |
| 12 | L. A. Gatys, A. S. Ecker, and M. Bethge, "Image style transfer using convolutional neural networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. | 미소장 |
| 13 | M. Tan and Q. V. Le, "EfficientDet: Scalable and efficient object detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. DOI: https://doi.org/10.48550/arXiv.1911.09070 | 미소장 |
| 14 | J. Hosang, R. Benenson, P. Dollár, and B. Schiele, "Learning non-maximum suppression," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. DOI: https://doi.org/10.48550/arXiv.1705.02950 | 미소장 |
| 15 | D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," in Proceedings of the 3rd International Conference on Learning Representations (ICLR), Sep. 2014. https://doi.org/10.48550/arXiv.1409.0473 | 미소장 |
*표시는 필수 입력사항입니다.
| 전화번호 |
|---|
| 기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
|---|
| 번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
|---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내17
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.